{"title":"Uncertainties About the Role of River and Mangrove Dissolved Inorganic Carbon and Alkalinity Loads in Buffering the Great Barrier Reef Lagoon","authors":"Judith A. Rosentreter, Bradley D. Eyre","doi":"10.1029/2024GB008134","DOIUrl":null,"url":null,"abstract":"<p>Terrestrial dissolved inorganic carbon (DIC) and total alkalinity (TAlk) loads have contrasting effects on the pH and carbonate chemistry of the coastal ocean. While TAlk can buffer against ocean acidification, elevated exports of free CO<sub>2</sub> can further exacerbate ocean acidification. In this study, we quantify terrestrial DIC and TAlk loads from rivers and mangrove floodplains across six bioregions and varying flow conditions to assess their impact on the buffering capacity of the Great Barrier Reef (GBR) lagoon in Australia. For a mid-flow year, median terrestrial DIC and TAlk loads ranged from 0.72 to 0.89 Tg C yr<sup>−1</sup> and 0.26 to 1.03 Tg C yr<sup>−1</sup>, respectively. We find that mangrove-dominated terrestrial inputs only have a small influence on the whole GBR but contribute 12.5% (range: 1.9%–45.7%) of the DIC and 18.7% (range: 2.8%–68.2%) of the TAlk inner shelf inventory. Depending on the approach used to estimate TAlk loads, mangroves have a potential short-term buffering effect on near-shore coastal waters due to higher TAlk loads. However, long-term mangrove TAlk production via pyrite formation complicates this interpretation, highlighting the need for ongoing monitoring to understand the complex interplay between terrestrial inputs and their effect on the GBR carbonate chemistry.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008134","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Terrestrial dissolved inorganic carbon (DIC) and total alkalinity (TAlk) loads have contrasting effects on the pH and carbonate chemistry of the coastal ocean. While TAlk can buffer against ocean acidification, elevated exports of free CO2 can further exacerbate ocean acidification. In this study, we quantify terrestrial DIC and TAlk loads from rivers and mangrove floodplains across six bioregions and varying flow conditions to assess their impact on the buffering capacity of the Great Barrier Reef (GBR) lagoon in Australia. For a mid-flow year, median terrestrial DIC and TAlk loads ranged from 0.72 to 0.89 Tg C yr−1 and 0.26 to 1.03 Tg C yr−1, respectively. We find that mangrove-dominated terrestrial inputs only have a small influence on the whole GBR but contribute 12.5% (range: 1.9%–45.7%) of the DIC and 18.7% (range: 2.8%–68.2%) of the TAlk inner shelf inventory. Depending on the approach used to estimate TAlk loads, mangroves have a potential short-term buffering effect on near-shore coastal waters due to higher TAlk loads. However, long-term mangrove TAlk production via pyrite formation complicates this interpretation, highlighting the need for ongoing monitoring to understand the complex interplay between terrestrial inputs and their effect on the GBR carbonate chemistry.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.