New approach of recycling vanadium-bearing slags as a binder in high-alumina refractory castables application

Mathilda Derensy, Thomas Zanin, Jan-Felix Bleck, Thorsten Tonnesen, Jesus Gonzalez-Julian
{"title":"New approach of recycling vanadium-bearing slags as a binder in high-alumina refractory castables application","authors":"Mathilda Derensy,&nbsp;Thomas Zanin,&nbsp;Jan-Felix Bleck,&nbsp;Thorsten Tonnesen,&nbsp;Jesus Gonzalez-Julian","doi":"10.1002/ces2.10242","DOIUrl":null,"url":null,"abstract":"<p>Handling the massive quantities of by-products from metallurgical processes has become a major concern in recent decades. Efforts to develop sustainable alternatives for these secondary resources are ongoing to achieve the transition to climate neutrality. This study has investigated the potential of employing vanadium-bearing slag as a new value-added binder in refractories, aiming to replace virgin raw materials. Two types of vanadium-bearing slags from BOF, each containing &lt;2 wt.% vanadium were studied. Low-cement vanadium slag-based castables were prepared by gradually substituting 0, 2.5, and 5 wt.% of the commercial calcium aluminate cements (Secar71 and CMA72) by the slags. The flow values of the mixes containing 5 wt.% of slag decrease significantly from about 90% to 30% after 30 min, showing poor ability to flow and thus are not considered as self-flow castables. Castables containing 2.5 wt.% of slag present a cold crushing strength value, in the range of 71–116 MPa while values for castables containing 5 wt.% of slag fall into the range of 53–68 MPa due to the lower packing properties leading to higher porosity and reduce in strength. Similar observation was concluded for cold modulus of rupture. The micrographs of the samples containing both slag and cement show promising compatibility between the binder and aggregates after sintering at 1500°C. Overall, characteristics obtained with the samples containing slag show promising alternatives as a refractory lining.</p>","PeriodicalId":13948,"journal":{"name":"International Journal of Ceramic Engineering & Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ces2.10242","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ceramic Engineering & Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ces2.10242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Handling the massive quantities of by-products from metallurgical processes has become a major concern in recent decades. Efforts to develop sustainable alternatives for these secondary resources are ongoing to achieve the transition to climate neutrality. This study has investigated the potential of employing vanadium-bearing slag as a new value-added binder in refractories, aiming to replace virgin raw materials. Two types of vanadium-bearing slags from BOF, each containing <2 wt.% vanadium were studied. Low-cement vanadium slag-based castables were prepared by gradually substituting 0, 2.5, and 5 wt.% of the commercial calcium aluminate cements (Secar71 and CMA72) by the slags. The flow values of the mixes containing 5 wt.% of slag decrease significantly from about 90% to 30% after 30 min, showing poor ability to flow and thus are not considered as self-flow castables. Castables containing 2.5 wt.% of slag present a cold crushing strength value, in the range of 71–116 MPa while values for castables containing 5 wt.% of slag fall into the range of 53–68 MPa due to the lower packing properties leading to higher porosity and reduce in strength. Similar observation was concluded for cold modulus of rupture. The micrographs of the samples containing both slag and cement show promising compatibility between the binder and aggregates after sintering at 1500°C. Overall, characteristics obtained with the samples containing slag show promising alternatives as a refractory lining.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Rapid and low-temperature synthesis of MoAlB MAB phase by using stress-induced Al-particles Investigating lightweight foamed concrete prepared using selected brands of detergent and cement grades Effect of potassium-waterglass composition on strength development and leaching behavior of geopolymers in different curing conditions Crystallographic characterization of Ag-doping in nanocrystallite hydroxyapatite and evaluation of photocatalytic activity of organic pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1