Electrophoretic video display based on image semantic segmentation

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of the Society for Information Display Pub Date : 2024-11-08 DOI:10.1002/jsid.2018
Heng Zhang, Shi-Xiao Li, Jian-Wen Chen, Zi-Yang Wang, Xiao Bo, Rui-Si Gao, Peng-Fei Bai, Guo-Fu Zhou
{"title":"Electrophoretic video display based on image semantic segmentation","authors":"Heng Zhang,&nbsp;Shi-Xiao Li,&nbsp;Jian-Wen Chen,&nbsp;Zi-Yang Wang,&nbsp;Xiao Bo,&nbsp;Rui-Si Gao,&nbsp;Peng-Fei Bai,&nbsp;Guo-Fu Zhou","doi":"10.1002/jsid.2018","DOIUrl":null,"url":null,"abstract":"<p>Electrophoretic displays (EPDs) are popular in consumer electronics, like e-readers and tags, for their paper-like visuals and minimal power consumption. However, EPDs struggle to rapidly switch to target grayscales due to the inherent limitations in the response speed of their display particles. Video halftoning technology achieves a smoother video grayscale display, but it also inevitably reduces the image quality and affects the viewing experience. Therefore, this paper proposes an EPD driving method based on image semantic segmentation. The method could distinguish the dynamic region and the static region accurately. For static areas, high-definition driving waveforms were used to ensure the image display accuracy. For the dynamic area, dynamic target and dynamic text were processed by different algorithms, respectively, and the speed-driving waveforms were used to maintain the fluency and clarity of the video display. With the method we proposed, the display quality for EPD in complex video playback was optimized significantly. Compared to DBS refresh techniques, the SSIM had increased from 4% to 82% and the PSNR had increased from 2.56 dB to 10.89 dB with our method, significantly enhancing the video playback performance of EPDs.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":"33 1","pages":"34-45"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophoretic displays (EPDs) are popular in consumer electronics, like e-readers and tags, for their paper-like visuals and minimal power consumption. However, EPDs struggle to rapidly switch to target grayscales due to the inherent limitations in the response speed of their display particles. Video halftoning technology achieves a smoother video grayscale display, but it also inevitably reduces the image quality and affects the viewing experience. Therefore, this paper proposes an EPD driving method based on image semantic segmentation. The method could distinguish the dynamic region and the static region accurately. For static areas, high-definition driving waveforms were used to ensure the image display accuracy. For the dynamic area, dynamic target and dynamic text were processed by different algorithms, respectively, and the speed-driving waveforms were used to maintain the fluency and clarity of the video display. With the method we proposed, the display quality for EPD in complex video playback was optimized significantly. Compared to DBS refresh techniques, the SSIM had increased from 4% to 82% and the PSNR had increased from 2.56 dB to 10.89 dB with our method, significantly enhancing the video playback performance of EPDs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Society for Information Display
Journal of the Society for Information Display 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.70%
发文量
98
审稿时长
3 months
期刊介绍: The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Flexible bezel-less thin-film transistor backplane with through-plastic-vias for seamless tiling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1