A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2025-01-09 DOI:10.1155/mmce/5999155
Hangxin Liu, Hao Wang, Li Xu, Bingqi Liu, Junhong Liu, Xiaobo Zhang, Xuesong Yuan, Bin Li
{"title":"A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna","authors":"Hangxin Liu,&nbsp;Hao Wang,&nbsp;Li Xu,&nbsp;Bingqi Liu,&nbsp;Junhong Liu,&nbsp;Xiaobo Zhang,&nbsp;Xuesong Yuan,&nbsp;Bin Li","doi":"10.1155/mmce/5999155","DOIUrl":null,"url":null,"abstract":"<p>The domain decomposition method (DDM) enables efficient simulation of electromagnetic problems in large-scale array antennas using full-wave methods on moderate hardware. This paper introduces and compares two nonoverlapping DDMs serving as preconditioners with outstanding simulation efficiency. The first method targets finite periodic array antennas by transforming a single array unit rather than explicitly modeling the entire array, effectively leveraging repetitive structures to significantly reduce memory usage and computation time. The second method applies to universal array antennas with arbitrary geometries, employing both planar and nonplanar mesh-based domain partitioning at subdomain interfaces for flexible modeling of complex arrays. To further enhance computational performance, we propose a parallel multilevel preconditioner based on the block Jacobi preconditioner, thereby accelerating the solution efficiency of subdomain matrix equations in both methods. Additionally, since the choice of domain partitioning method significantly impacts the computational efficiency of DDMs, we propose three different subdomain partitioning strategies. These strategies enable us to accelerate computations while expanding our capacity to simulate a wider variety of types of cases. We developed a fast electromagnetic radiation simulation tool utilizing these techniques. Simulations of exponentially tapered slot (Vivaldi) antenna arrays and antenna arrays with radomes demonstrate that our tool achieves accuracy comparable to commercial software, and notably, our tool outperforms commercial software in terms of the speed of iterative solutions.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/5999155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/5999155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The domain decomposition method (DDM) enables efficient simulation of electromagnetic problems in large-scale array antennas using full-wave methods on moderate hardware. This paper introduces and compares two nonoverlapping DDMs serving as preconditioners with outstanding simulation efficiency. The first method targets finite periodic array antennas by transforming a single array unit rather than explicitly modeling the entire array, effectively leveraging repetitive structures to significantly reduce memory usage and computation time. The second method applies to universal array antennas with arbitrary geometries, employing both planar and nonplanar mesh-based domain partitioning at subdomain interfaces for flexible modeling of complex arrays. To further enhance computational performance, we propose a parallel multilevel preconditioner based on the block Jacobi preconditioner, thereby accelerating the solution efficiency of subdomain matrix equations in both methods. Additionally, since the choice of domain partitioning method significantly impacts the computational efficiency of DDMs, we propose three different subdomain partitioning strategies. These strategies enable us to accelerate computations while expanding our capacity to simulate a wider variety of types of cases. We developed a fast electromagnetic radiation simulation tool utilizing these techniques. Simulations of exponentially tapered slot (Vivaldi) antenna arrays and antenna arrays with radomes demonstrate that our tool achieves accuracy comparable to commercial software, and notably, our tool outperforms commercial software in terms of the speed of iterative solutions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
A Fast Electromagnetic Radiation Simulation Tool for Finite Periodic Array Antenna and Universal Array Antenna A Broadband RCS Reduction Coating Using a Novel Arrangement of Metasurface Unit Cells Based on Two Substrates BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection A Spaceborne Ka-Band Earth-Coverage Phased Array Antenna Based on DBF-Shared Subarray for LEO Communications A Wideband High-Efficiency Dual-Polarized Metal-Only Reflectarray Antenna Using Folded Groove Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1