{"title":"Innovative distribution network design using GAN-based distributionally robust optimization for DG planning","authors":"Peijin Li, Yichen Shen, Yitong Shang, Mohannad Alhazmi","doi":"10.1049/gtd2.13350","DOIUrl":null,"url":null,"abstract":"<p>The integration of renewable energy sources and the increasing demand for reliable power have posed significant challenges in the design and operation of distribution networks under uncertain conditions. The inherent variability in renewable energy generation and fluctuating consumer load demand requires advanced strategies for Distributed Energy Resources (DERs) allocation and sizing to enhance grid resilience and operational efficiency. This article introduces an innovative framework for optimizing distribution network design under these uncertainties. The approach integrates deep learning-assisted Distributionally Robust Optimization (DRO) with Generative Adversarial Networks (GANs) to dynamically model and manage the inherent variability in renewable sources and demand fluctuations. Employing a combination of nonlinear optimization techniques and advanced statistical methods, the framework robustly optimizes network configurations to minimize losses and improve voltage stability. The model's efficacy is rigorously tested on the IEEE 33-bus system, achieving a 15% reduction in power distribution losses and a 20% improvement in voltage stability compared to traditional models. Utilizing open-source computational tools, the method not only boosts operational reliability and efficiency but also adapts effectively to the increasing integration of volatile renewable energy sources. These results underscore the framework's potential as a scalable and robust solution for modern power network design challenges.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13350","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13350","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of renewable energy sources and the increasing demand for reliable power have posed significant challenges in the design and operation of distribution networks under uncertain conditions. The inherent variability in renewable energy generation and fluctuating consumer load demand requires advanced strategies for Distributed Energy Resources (DERs) allocation and sizing to enhance grid resilience and operational efficiency. This article introduces an innovative framework for optimizing distribution network design under these uncertainties. The approach integrates deep learning-assisted Distributionally Robust Optimization (DRO) with Generative Adversarial Networks (GANs) to dynamically model and manage the inherent variability in renewable sources and demand fluctuations. Employing a combination of nonlinear optimization techniques and advanced statistical methods, the framework robustly optimizes network configurations to minimize losses and improve voltage stability. The model's efficacy is rigorously tested on the IEEE 33-bus system, achieving a 15% reduction in power distribution losses and a 20% improvement in voltage stability compared to traditional models. Utilizing open-source computational tools, the method not only boosts operational reliability and efficiency but also adapts effectively to the increasing integration of volatile renewable energy sources. These results underscore the framework's potential as a scalable and robust solution for modern power network design challenges.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf