{"title":"Effects of Pressure on Nitrogen Content and Solidification Structure during Pressurized Electroslag Remelting Process with Composite Electrode","authors":"Haoyang Suo, Fubin Liu, Cong-Peng Kang, Huabing Li, Zhouhua Jiang, Xin Geng","doi":"10.1002/srin.202400520","DOIUrl":null,"url":null,"abstract":"<p>The nitrogen content and solidification structure of the 1Mn18Cr18N ingots produced by the customized laboratory-scale vacuum induction melting furnace and the pressure electroslag remelting furnace (PESR) with novel composite electrode under different pressure and the same power consumption are compared and studied. The results show that there are perfectly uniform radial chromium and nitrogen profiles during the PESR process. The nitrogen uptake reaction in the PESR process with composite electrode takes place on the liquid metal film on the electrode. Nitrogen uptake could be improved by increasing the nitrogen partial pressure. In addition, the basin depth at a pressure of 0.1 and 1.22 MPa is about 41 and 38 mm, the angle of the grains with respect to the vertical axis is 35° and 31°, respectively. The flat metal basin profile resulted from the thermal resistance at the slag–mold interface decreasing with increasing pressure. Primary and secondary dendritic arm spacing (PDAS and SDAS) variations exhibit an increasing and subsequently decreasing the trend as they move further away from the center in a horizontal direction. Both PDAS and SDAS decrease with increasing pressure from 0.1 to 1.22 MPa.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400520","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The nitrogen content and solidification structure of the 1Mn18Cr18N ingots produced by the customized laboratory-scale vacuum induction melting furnace and the pressure electroslag remelting furnace (PESR) with novel composite electrode under different pressure and the same power consumption are compared and studied. The results show that there are perfectly uniform radial chromium and nitrogen profiles during the PESR process. The nitrogen uptake reaction in the PESR process with composite electrode takes place on the liquid metal film on the electrode. Nitrogen uptake could be improved by increasing the nitrogen partial pressure. In addition, the basin depth at a pressure of 0.1 and 1.22 MPa is about 41 and 38 mm, the angle of the grains with respect to the vertical axis is 35° and 31°, respectively. The flat metal basin profile resulted from the thermal resistance at the slag–mold interface decreasing with increasing pressure. Primary and secondary dendritic arm spacing (PDAS and SDAS) variations exhibit an increasing and subsequently decreasing the trend as they move further away from the center in a horizontal direction. Both PDAS and SDAS decrease with increasing pressure from 0.1 to 1.22 MPa.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming