Functional Analysis of Complex Structural and Splice-Altering Variants in the ARSB Gene Towards the Personalized Antisense-Based Therapy for Mucopolysaccharidosis Type VI Patients

IF 3.3 2区 医学 Q2 GENETICS & HEREDITY Human Mutation Pub Date : 2025-01-10 DOI:10.1155/humu/2250030
Igor Bychkov, Alexandra Filatova, Galina Baydakova, Nataliya Sikora, Emiliya Garifullina, Anna Bykova, Vyacheslav Tabakov, Alexandr Skretnev, Mikhail Skoblov, Ekaterina Zakharova
{"title":"Functional Analysis of Complex Structural and Splice-Altering Variants in the ARSB Gene Towards the Personalized Antisense-Based Therapy for Mucopolysaccharidosis Type VI Patients","authors":"Igor Bychkov,&nbsp;Alexandra Filatova,&nbsp;Galina Baydakova,&nbsp;Nataliya Sikora,&nbsp;Emiliya Garifullina,&nbsp;Anna Bykova,&nbsp;Vyacheslav Tabakov,&nbsp;Alexandr Skretnev,&nbsp;Mikhail Skoblov,&nbsp;Ekaterina Zakharova","doi":"10.1155/humu/2250030","DOIUrl":null,"url":null,"abstract":"<p>Mucopolysaccharidosis Type VI (MPS VI) is a lysosomal storage disorder associated with biallelic pathogenic variants in the <i>ARSB</i> gene. Herein, we present three patients with biochemical and clinical pictures of MPS VI, for whom routine molecular genetic analysis using Sanger sequencing of <i>ARSB</i> failed to identify one or both causative variants. RNA analysis of patients’ samples revealed alterations of the wild-type <i>ARSB</i> mRNA isoform in all cases, and one case required further analysis using whole genome sequencing. As a result, we identified one complex structural variant, which is a 52-kb insertion of the <i>LHFPL2</i> gene fragment in the <i>ARSB</i> Intron 4, derived from nonallelic homologous recombination and leading to premature transcription termination, a recurrent deep intronic variant leading to pseudoexon activation and an intragenic deletion altering the integrity and splicing of the <i>ARSB</i> Exon 2.</p><p>Using a minigene-based cellular model, we demonstrated that the identified pseudoexon can be efficiently blocked by antisense molecules incorporated into modified U7 small nuclear RNAs and circular RNAs. The same approach was used to block the overlapping polymorphic pseudoexon in the <i>ARSB</i> gene and increase the amount of wild-type mRNA isoform approximately twofold.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2025 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/humu/2250030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/humu/2250030","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Mucopolysaccharidosis Type VI (MPS VI) is a lysosomal storage disorder associated with biallelic pathogenic variants in the ARSB gene. Herein, we present three patients with biochemical and clinical pictures of MPS VI, for whom routine molecular genetic analysis using Sanger sequencing of ARSB failed to identify one or both causative variants. RNA analysis of patients’ samples revealed alterations of the wild-type ARSB mRNA isoform in all cases, and one case required further analysis using whole genome sequencing. As a result, we identified one complex structural variant, which is a 52-kb insertion of the LHFPL2 gene fragment in the ARSB Intron 4, derived from nonallelic homologous recombination and leading to premature transcription termination, a recurrent deep intronic variant leading to pseudoexon activation and an intragenic deletion altering the integrity and splicing of the ARSB Exon 2.

Using a minigene-based cellular model, we demonstrated that the identified pseudoexon can be efficiently blocked by antisense molecules incorporated into modified U7 small nuclear RNAs and circular RNAs. The same approach was used to block the overlapping polymorphic pseudoexon in the ARSB gene and increase the amount of wild-type mRNA isoform approximately twofold.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Mutation
Human Mutation 医学-遗传学
CiteScore
8.40
自引率
5.10%
发文量
190
审稿时长
2 months
期刊介绍: Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.
期刊最新文献
Clinic Examination and Gene Diagnosis for a Birt–Hogg–Dubé Syndrome Family With a Novel flcn Frameshift Mutation Causing Nonsense-Mediated mRNA Degradation Whole Genome Sequencing of “Mutation-Negative” Individuals With Cornelia de Lange Syndrome Incorporating Nanopore Sequencing Into a Diverse Diagnostic Toolkit for Incontinentia Pigmenti Functional Analysis of Complex Structural and Splice-Altering Variants in the ARSB Gene Towards the Personalized Antisense-Based Therapy for Mucopolysaccharidosis Type VI Patients An Update on Reported Variants in the Skeletal Muscle α-Actin (ACTA1) Gene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1