{"title":"Corrosion resistance of insulating refractories for the synthesis of lithium-ion battery LiCoO2 cathode materials","authors":"Biao Yang, Bo Yin, Han Chen, Yifeng Zheng","doi":"10.1111/ijac.14948","DOIUrl":null,"url":null,"abstract":"<p>LiCoO<sub>2</sub> has become the most widely used cathode material in lithium-ion batteries because of its high capacity and excellent stability. The high-temperature solid-state method is commonly used for the preparation of LiCoO<sub>2</sub>. However, this method will produce highly penetrating Li<sub>2</sub>O, which causes spall or fracture of the insulating refractory materials in the kiln. In this study, the corrosion resistance of bubble alumina, mullite, and calcium hexaaluminate (CA<sub>6</sub>) insulating refractories to LiCoO<sub>2</sub> has been thoroughly investigated. Combining the laboratory-scale interfacial reaction experiments with post-experimental life cycle analysis of industrial insulating refractories, the interaction between the insulating refractory materials and LiCoO<sub>2</sub> after calcination at 900°C for 5 h and the corrosion behavior of LiCoO<sub>2</sub> on different insulating refractory materials following heat treatment at 900°C for 5 h every time and repeated seven times are investigated. The corrosion mechanisms are concluded by analyzing the physicochemical composition and macro- and micromorphology of the three insulating refractory materials before and after corrosion. The results can provide a basis for the use of insulating refractories in the development of lithium batteries.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14948","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
LiCoO2 has become the most widely used cathode material in lithium-ion batteries because of its high capacity and excellent stability. The high-temperature solid-state method is commonly used for the preparation of LiCoO2. However, this method will produce highly penetrating Li2O, which causes spall or fracture of the insulating refractory materials in the kiln. In this study, the corrosion resistance of bubble alumina, mullite, and calcium hexaaluminate (CA6) insulating refractories to LiCoO2 has been thoroughly investigated. Combining the laboratory-scale interfacial reaction experiments with post-experimental life cycle analysis of industrial insulating refractories, the interaction between the insulating refractory materials and LiCoO2 after calcination at 900°C for 5 h and the corrosion behavior of LiCoO2 on different insulating refractory materials following heat treatment at 900°C for 5 h every time and repeated seven times are investigated. The corrosion mechanisms are concluded by analyzing the physicochemical composition and macro- and micromorphology of the three insulating refractory materials before and after corrosion. The results can provide a basis for the use of insulating refractories in the development of lithium batteries.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;