Projections of Heavy Precipitation Characteristics Over the Greater Alpine Region Using a Kilometer–Scale Climate Model Ensemble

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-01-11 DOI:10.1029/2024JD040901
Rebekka Estermann, Jan Rajczak, Patricio Velasquez, Ruth Lorenz, Christoph Schär
{"title":"Projections of Heavy Precipitation Characteristics Over the Greater Alpine Region Using a Kilometer–Scale Climate Model Ensemble","authors":"Rebekka Estermann,&nbsp;Jan Rajczak,&nbsp;Patricio Velasquez,&nbsp;Ruth Lorenz,&nbsp;Christoph Schär","doi":"10.1029/2024JD040901","DOIUrl":null,"url":null,"abstract":"<p>This study presents a detailed analysis of the CORDEX-FPS multi-model ensemble of convection-permitting climate simulations over the greater Alpine region. These simulations cover 10-year time slices and were obtained by downscaling global climate model (GCM) projections, using regional climate models (RCMs) and kilometer-scale convection-permitting models (CPMs). Our analysis over the Alpine area agrees with previous studies in terms of projected summer precipitation changes for the end of the century, in particular regarding a decrease in mean precipitation and increases in hourly precipitation intensities. In addition, we assess projected changes over different subregions, provide analyses at monthly and seasonal basis for temporal aggregations ranging from 1 hr to 5 days, address different extreme precipitation indices, and present validation against an Alpine-scale daily precipitation data set and an hourly precipitation product based on 3 Doppler radars. The evaluation reveals that CPMs show a refinement of spatial patterns, reduce the overestimation of precipitation frequency, and better capture intense precipitation characteristics. The improvements are especially apparent on the sub-daily scale and in the summer season. Convection-Permitting Model climate projections show an increase in precipitation intensity for all seasons and across all temporal aggregations in all regions, except for the Mediterranean in summer. The projections from different CPMs qualitatively agree, despite significant differences in the GCMs circulation changes, suggesting that the increase in heavy events is primarily due to thermodynamic effects. We also present a hypothesis explaining why projections of relative changes in hourly precipitation percentiles are similar between CPMs and RCMs, despite large biases in RCMs.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD040901","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040901","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a detailed analysis of the CORDEX-FPS multi-model ensemble of convection-permitting climate simulations over the greater Alpine region. These simulations cover 10-year time slices and were obtained by downscaling global climate model (GCM) projections, using regional climate models (RCMs) and kilometer-scale convection-permitting models (CPMs). Our analysis over the Alpine area agrees with previous studies in terms of projected summer precipitation changes for the end of the century, in particular regarding a decrease in mean precipitation and increases in hourly precipitation intensities. In addition, we assess projected changes over different subregions, provide analyses at monthly and seasonal basis for temporal aggregations ranging from 1 hr to 5 days, address different extreme precipitation indices, and present validation against an Alpine-scale daily precipitation data set and an hourly precipitation product based on 3 Doppler radars. The evaluation reveals that CPMs show a refinement of spatial patterns, reduce the overestimation of precipitation frequency, and better capture intense precipitation characteristics. The improvements are especially apparent on the sub-daily scale and in the summer season. Convection-Permitting Model climate projections show an increase in precipitation intensity for all seasons and across all temporal aggregations in all regions, except for the Mediterranean in summer. The projections from different CPMs qualitatively agree, despite significant differences in the GCMs circulation changes, suggesting that the increase in heavy events is primarily due to thermodynamic effects. We also present a hypothesis explaining why projections of relative changes in hourly precipitation percentiles are similar between CPMs and RCMs, despite large biases in RCMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Multiscale WRF Modeling of Meso- to Micro-Scale Flows During Sundowner Events Overlooked Contribution of Salt Lake Emissions: A Case Study of Dust Deposition From the Qinghai-Xizang Plateau Mechanisms Behind the Long-Distance Diurnal Offshore Precipitation Propagation in Northwestern South America Relative Importance of Mid-Level and Low-Level Vortices in Tropical Cyclogenesis Inferred From Experiments on Sensitivity to Radiation Impact of Early Winter Antarctic Sea Ice Reduction on Antarctic Stratospheric Polar Vortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1