Flood fragility and vulnerability functions for residential buildings in the Province of Leyte, Philippines

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Flood Risk Management Pub Date : 2024-11-12 DOI:10.1111/jfr3.13043
Isaac Besarra, Aaron Opdyke, Diocel Harold Aquino, Joy Santiago, Jerico E. Mendoza, Alfredo Mahar Francisco A. Lagmay
{"title":"Flood fragility and vulnerability functions for residential buildings in the Province of Leyte, Philippines","authors":"Isaac Besarra,&nbsp;Aaron Opdyke,&nbsp;Diocel Harold Aquino,&nbsp;Joy Santiago,&nbsp;Jerico E. Mendoza,&nbsp;Alfredo Mahar Francisco A. Lagmay","doi":"10.1111/jfr3.13043","DOIUrl":null,"url":null,"abstract":"<p>The Philippines experiences frequent flooding, but, despite expansive tools for risk reduction, there remain gaps in understanding generalised relationships between flood events and damage to residential structures for regions outside the nation's capital. This gap has limited the ability to model flood risk and damage without robust functions to link hazards and housing vulnerability. This research draws on 394 household surveys to empirically derive a suite of flood fragility and vulnerability functions for residential structures in the Province of Leyte for light material, elevated light material and masonry structures. The results showed that masonry construction was more resilient to floods compared to light material counterparts. Elevated light material structures also exhibited lower damages at low inundations but tend to fail abruptly at flood depths greater than 3 m. By empirically deriving flood damage functions, the findings contribute to a more localised approach to quantifying housing vulnerability and risk that can be used for catastrophe and risk modelling, with applications for government agencies, the insurance industry and disaster risk researchers. This research lays the foundation for future flood risk mapping with growing significance under climate change.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13043","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Philippines experiences frequent flooding, but, despite expansive tools for risk reduction, there remain gaps in understanding generalised relationships between flood events and damage to residential structures for regions outside the nation's capital. This gap has limited the ability to model flood risk and damage without robust functions to link hazards and housing vulnerability. This research draws on 394 household surveys to empirically derive a suite of flood fragility and vulnerability functions for residential structures in the Province of Leyte for light material, elevated light material and masonry structures. The results showed that masonry construction was more resilient to floods compared to light material counterparts. Elevated light material structures also exhibited lower damages at low inundations but tend to fail abruptly at flood depths greater than 3 m. By empirically deriving flood damage functions, the findings contribute to a more localised approach to quantifying housing vulnerability and risk that can be used for catastrophe and risk modelling, with applications for government agencies, the insurance industry and disaster risk researchers. This research lays the foundation for future flood risk mapping with growing significance under climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
期刊最新文献
Toward Sustainable Flood Resilience: Assessing Efficacy of Paddy Field Dams to Reduce Floods in Jakarta Uncrewed Aerial Vehicle-Based Multispectral Imagery for River Soil Monitoring Putting the English Flooding of 2019–2021 in the Context of Antecedent Conditions Bridge Collapse in Mutsu, Aomori Prefecture, Japan in 2021 Attribution of Flood Forecasting Errors From a Multi-Model Perspective in Milan Urbanized River Basins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1