Robust Adaptive Extremum Seeking Control Without Persistence of Excitation: Theory to Experiment

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Robust and Nonlinear Control Pub Date : 2024-11-12 DOI:10.1002/rnc.7707
Tushar Garg, Sayan Basu Roy, Kyriakos G. Vamvoudakis
{"title":"Robust Adaptive Extremum Seeking Control Without Persistence of Excitation: Theory to Experiment","authors":"Tushar Garg,&nbsp;Sayan Basu Roy,&nbsp;Kyriakos G. Vamvoudakis","doi":"10.1002/rnc.7707","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article, we develop a novel adaptive extremum-seeking control (AdESC) algorithm with robustness guarantees and without persistence of excitation (PE). Specifically, this builds on a proportional-integral (PI)-like parameter estimator. A zeroth-order optimization framework is used, where the optimizer/agent can only query the numerical value of the cost function at the current coordinate given an unmodeled bounded disturbance. Since parameter estimation plays a decisive role in the stability and convergence properties of AdESC algorithm, it is also well established in the existing literature that to ensure parameter convergence a stringent PE condition is required. Here, we eliminate the need for a stringent PE condition by utilizing a novel set of weighted integral filter dynamics, while ensuring sufficient richness using a milder condition, called initial excitation (IE). Moreover, to validate the robustness guarantees towards unmodeled bounded disturbance, a detailed Lyapunov function based analysis is performed to establish the closed-loop stability and convergence in the form of uniform ultimate boundedness (UUB). Furthermore, an experimental study using a unicycle wheeled mobile robot (WMR) is carried out as a proof-of-concept considering disturbance and disturbance-free scenarios.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 3","pages":"1171-1182"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7707","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we develop a novel adaptive extremum-seeking control (AdESC) algorithm with robustness guarantees and without persistence of excitation (PE). Specifically, this builds on a proportional-integral (PI)-like parameter estimator. A zeroth-order optimization framework is used, where the optimizer/agent can only query the numerical value of the cost function at the current coordinate given an unmodeled bounded disturbance. Since parameter estimation plays a decisive role in the stability and convergence properties of AdESC algorithm, it is also well established in the existing literature that to ensure parameter convergence a stringent PE condition is required. Here, we eliminate the need for a stringent PE condition by utilizing a novel set of weighted integral filter dynamics, while ensuring sufficient richness using a milder condition, called initial excitation (IE). Moreover, to validate the robustness guarantees towards unmodeled bounded disturbance, a detailed Lyapunov function based analysis is performed to establish the closed-loop stability and convergence in the form of uniform ultimate boundedness (UUB). Furthermore, an experimental study using a unicycle wheeled mobile robot (WMR) is carried out as a proof-of-concept considering disturbance and disturbance-free scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在本文中,我们开发了一种新型自适应极值寻优控制(AdESC)算法,该算法具有鲁棒性保证,且无持续激励(PE)。具体来说,该算法建立在类似于比例积分(PI)的参数估计器的基础上。该算法采用零阶优化框架,优化器/代理只能在当前坐标上查询成本函数的数值,并给出一个未建模的有界干扰。由于参数估计对 AdESC 算法的稳定性和收敛性起着决定性的作用,因此现有文献也明确指出,要确保参数收敛,需要严格的 PE 条件。在这里,我们利用一组新颖的加权积分滤波器动态,消除了对严格 PE 条件的需求,同时利用一个较温和的条件(称为初始激励 (IE))确保足够的丰富性。此外,为了验证对未建模有界干扰的鲁棒性保证,还进行了详细的基于 Lyapunov 函数的分析,以统一终极有界性(UUB)的形式建立闭环稳定性和收敛性。此外,还使用独轮车轮式移动机器人(WMR)进行了实验研究,作为概念验证,考虑了干扰和无干扰情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
期刊最新文献
Issue Information Issue Information Issue Information Cooperative Robust Output Regulation for Networks of Hyperbolic Systems With Unknown Signal Models Fault Estimation and Fault-Tolerant Control of Multiple Faults and Uncertain Disturbances Based on Generalized Sliding Mode Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1