Pengyan Zhang, Yi Yang, Zhenyi Huang, Qiang Yue, Ke Zhang
{"title":"Study on Microstructure and Low-Temperature Impact Toughness in Coarse Grain Heat-Affected Zone of EH460 Steel","authors":"Pengyan Zhang, Yi Yang, Zhenyi Huang, Qiang Yue, Ke Zhang","doi":"10.1002/srin.202400276","DOIUrl":null,"url":null,"abstract":"<p>Herein, the effects of peak temperature on the microstructure and low-temperature impact toughness of coarse grain heat-affected zone (CGHAZ) of EH460 steel are investigated by Gleeble simulation welding. The low-temperature impact toughness of CGHAZ decreases with the increase of peak temperature. With the increase of peak temperature, the microstructure of CGHAZ gradually changes from bainite to a mixed structure composed of bainite, intragranular ferrite, side lath ferrite, and a small amount of grain boundary ferrite. The inclusions size decreases as the peak temperature increases. The existence of large-sized inclusions is conducive to the initiation and propagation of cracks, reducing the low-temperature impact toughness of the material.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400276","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, the effects of peak temperature on the microstructure and low-temperature impact toughness of coarse grain heat-affected zone (CGHAZ) of EH460 steel are investigated by Gleeble simulation welding. The low-temperature impact toughness of CGHAZ decreases with the increase of peak temperature. With the increase of peak temperature, the microstructure of CGHAZ gradually changes from bainite to a mixed structure composed of bainite, intragranular ferrite, side lath ferrite, and a small amount of grain boundary ferrite. The inclusions size decreases as the peak temperature increases. The existence of large-sized inclusions is conducive to the initiation and propagation of cracks, reducing the low-temperature impact toughness of the material.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming