Interpreting depositional environments from modern floodplain sediments using optically stimulated luminescence

IF 2.4 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Boreas Pub Date : 2024-11-12 DOI:10.1111/bor.12679
Abigail L. Langston, Abbey L. Marcotte, Christina M. Neudorf, Kathleen Rodrigues, Amanda Keen-Zebert
{"title":"Interpreting depositional environments from modern floodplain sediments using optically stimulated luminescence","authors":"Abigail L. Langston,&nbsp;Abbey L. Marcotte,&nbsp;Christina M. Neudorf,&nbsp;Kathleen Rodrigues,&nbsp;Amanda Keen-Zebert","doi":"10.1111/bor.12679","DOIUrl":null,"url":null,"abstract":"<p>We investigate how luminescence signals imprinted on fluvial sediments vary depending on the depositional environment and vary through time in the same river. We collected sediment samples from four geomorphically distinct locations on the modern floodplain and modern point bar on the Buffalo River in northwest Arkansas, USA, in order to determine if different depositional environments are associated with distinct bleaching characteristics in the sediments. Our analysis revealed that all samples from different depositional environments yielded ages consistent with modern deposition. The samples collected from the floodplain and bar head contained a higher proportion of grains with residual doses, indicative of incomplete bleaching during transport, while samples from the mid-bar and bar tail appeared well bleached. Our results are particularly intriguing for two significant reasons. First, they highlight distinct equivalent dose distributions in different depositional environments. Second, they shed light on an intriguing relationship: despite generally well-bleached modern floodplain samples, ancient sediments from corresponding terraces displayed equivalent dose (D<sub>e</sub>) distributions that suggest partial bleaching in some cases. This research contributes to the growing body of work that seeks to establish a relationship between luminescence properties and sediment transport processes and offers valuable insight into how luminescence signals vary locally in modern fluvial deposits, which can help guide the interpretation of older fluvial deposits.</p>","PeriodicalId":9184,"journal":{"name":"Boreas","volume":"54 1","pages":"14-33"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bor.12679","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boreas","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bor.12679","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate how luminescence signals imprinted on fluvial sediments vary depending on the depositional environment and vary through time in the same river. We collected sediment samples from four geomorphically distinct locations on the modern floodplain and modern point bar on the Buffalo River in northwest Arkansas, USA, in order to determine if different depositional environments are associated with distinct bleaching characteristics in the sediments. Our analysis revealed that all samples from different depositional environments yielded ages consistent with modern deposition. The samples collected from the floodplain and bar head contained a higher proportion of grains with residual doses, indicative of incomplete bleaching during transport, while samples from the mid-bar and bar tail appeared well bleached. Our results are particularly intriguing for two significant reasons. First, they highlight distinct equivalent dose distributions in different depositional environments. Second, they shed light on an intriguing relationship: despite generally well-bleached modern floodplain samples, ancient sediments from corresponding terraces displayed equivalent dose (De) distributions that suggest partial bleaching in some cases. This research contributes to the growing body of work that seeks to establish a relationship between luminescence properties and sediment transport processes and offers valuable insight into how luminescence signals vary locally in modern fluvial deposits, which can help guide the interpretation of older fluvial deposits.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Boreas
Boreas 地学-地球科学综合
CiteScore
5.90
自引率
4.50%
发文量
36
审稿时长
>12 weeks
期刊介绍: Boreas has been published since 1972. Articles of wide international interest from all branches of Quaternary research are published. Biological as well as non-biological aspects of the Quaternary environment, in both glaciated and non-glaciated areas, are dealt with: Climate, shore displacement, glacial features, landforms, sediments, organisms and their habitat, and stratigraphical and chronological relationships. Anticipated international interest, at least within a continent or a considerable part of it, is a main criterion for the acceptance of papers. Besides articles, short items like discussion contributions and book reviews are published.
期刊最新文献
Issue Information Lateglacial and Holocene chronology of climate-driven postglacial landscape evolution in northeast Greenland Corrigendum Vegetation response to Early Holocene cooling events in the Moervaart region (northwestern Belgium) Interpreting depositional environments from modern floodplain sediments using optically stimulated luminescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1