Pooja V. Gaikwad, Nazifa Rahman, Pratyusha Ghosh, Dianna L. Ng, Ryan M. Williams
{"title":"Detection of Estrogen Receptor Status in Breast Cancer Cytology Samples by an Optical Nanosensor","authors":"Pooja V. Gaikwad, Nazifa Rahman, Pratyusha Ghosh, Dianna L. Ng, Ryan M. Williams","doi":"10.1002/anbr.202400099","DOIUrl":null,"url":null,"abstract":"<p>Breast cancer is a substantial source of morbidity and mortality worldwide. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are the primary biomarkers which inform breast cancer treatment. Although endocrine therapy for ER+ patients is widely available, there is a need for increased access to low-cost, rapid, and accurate ER testing methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. We evaluated the nanosensor in vitro prior to testing with 26 breast cancer samples which were collected by scraping the cut surface of fresh, surgically resected tumors. Twenty samples were ER+, and six ER−, representing 13 unique patients. We found that the nanosensor can differentiate ER− from ER+ patient biopsies through a shift in its center wavelength upon sample addition. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) SWCNT after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with the potential for additional molecular marker profiling.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a substantial source of morbidity and mortality worldwide. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) are the primary biomarkers which inform breast cancer treatment. Although endocrine therapy for ER+ patients is widely available, there is a need for increased access to low-cost, rapid, and accurate ER testing methods. In this work, we designed a near-infrared optical nanosensor using single-walled carbon nanotubes (SWCNT) as the transducer and an anti-ERα antibody as the recognition element. We evaluated the nanosensor in vitro prior to testing with 26 breast cancer samples which were collected by scraping the cut surface of fresh, surgically resected tumors. Twenty samples were ER+, and six ER−, representing 13 unique patients. We found that the nanosensor can differentiate ER− from ER+ patient biopsies through a shift in its center wavelength upon sample addition. Receiver operating characteristic area under the curve analyses determined that the strongest classifier with an AUC of 0.94 was the (7,5) SWCNT after direct incubation and measurement, and without further processing. We anticipate that further testing and development of this nanosensor may push its utility toward field-deployable, rapid ER subtyping with the potential for additional molecular marker profiling.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.