Stacking Ensemble Learning Method for Quantitative Analysis of Soluble Solid Content in Apples

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2025-01-13 DOI:10.1002/cem.3635
Lixin Zhang, Zhensheng Huang, Xiao Zhang
{"title":"Stacking Ensemble Learning Method for Quantitative Analysis of Soluble Solid Content in Apples","authors":"Lixin Zhang,&nbsp;Zhensheng Huang,&nbsp;Xiao Zhang","doi":"10.1002/cem.3635","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The soluble solids content (SSC) in apples directly affects their quality. This study aimed to detect SSC nondestructively using hyperspectral technology combined with chemometrics. However, data generation may not follow a specific pattern, and even small perturbations in the data can have a significant impact on the constructed model. To improve the anti-interference capability of individual models, this study proposed a stacking ensemble learning method that adopted partial least squares (PLS), support vector machine (SVM), extreme gradient boosting (Xgboost), random forest (RF) as basic-learners, and RF serving as a meta-learner. Experimental results showed that the performance of the established model on the test set were as follows: the root mean square error (RMSE) was 0.4325, mean absolute error (MAE) was 0.3245, mean absolute percentage error (MAPE) was 0.0271, coefficient of determination (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {R}^2 $$</annotation>\n </semantics></math>) was 0.9250. These results indicate that the stacking ensemble learning approach could appropriately fuse the predictive results of each basic-learner and improve the prediction accuracy of individual models. To verify the superiority of the proposed stacking ensemble learning method, the selection of its basic-learners, meta-learner, and combination strategy were compared and analyzed. This study not only provides a theoretical reference for the further development of related nondestructive detection equipment but also offers guidance for fusion algorithms as well.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3635","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

The soluble solids content (SSC) in apples directly affects their quality. This study aimed to detect SSC nondestructively using hyperspectral technology combined with chemometrics. However, data generation may not follow a specific pattern, and even small perturbations in the data can have a significant impact on the constructed model. To improve the anti-interference capability of individual models, this study proposed a stacking ensemble learning method that adopted partial least squares (PLS), support vector machine (SVM), extreme gradient boosting (Xgboost), random forest (RF) as basic-learners, and RF serving as a meta-learner. Experimental results showed that the performance of the established model on the test set were as follows: the root mean square error (RMSE) was 0.4325, mean absolute error (MAE) was 0.3245, mean absolute percentage error (MAPE) was 0.0271, coefficient of determination ( R 2 $$ {R}^2 $$ ) was 0.9250. These results indicate that the stacking ensemble learning approach could appropriately fuse the predictive results of each basic-learner and improve the prediction accuracy of individual models. To verify the superiority of the proposed stacking ensemble learning method, the selection of its basic-learners, meta-learner, and combination strategy were compared and analyzed. This study not only provides a theoretical reference for the further development of related nondestructive detection equipment but also offers guidance for fusion algorithms as well.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Nonparametric Threshold Estimation of Autocorrelated Statistics in Multivariate Statistical Process Monitoring Cell Culture Media and Raman Spectra Preprocessing Procedures Impact Glucose Chemometrics An Alignment-Agnostic Methodology for the Analysis of Designed Separations Data A Greener, Safer, and More Understandable AI for Natural Science and Technology Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1