Interdecadal Variation of Springtime Compound Temperature-Precipitation Extreme Events in China and Its Association With Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-01-13 DOI:10.1029/2024JD042503
Leying Wang, Shangfeng Chen, Wen Chen, Renguang Wu, Jun Wang
{"title":"Interdecadal Variation of Springtime Compound Temperature-Precipitation Extreme Events in China and Its Association With Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation","authors":"Leying Wang,&nbsp;Shangfeng Chen,&nbsp;Wen Chen,&nbsp;Renguang Wu,&nbsp;Jun Wang","doi":"10.1029/2024JD042503","DOIUrl":null,"url":null,"abstract":"<p>The concurrent occurrence of temperature and precipitation extremes, known as compound temperature-precipitation extreme events (CTPEEs), leads to more pronounced consequences for human society and ecosystems than when these extremes occur separately. However, such compound extremes have not been sufficiently studied, especially during boreal spring. Spring is an important transition season, during which the CTPEEs plays a pivotal role in plant growth and revival of terrestrial ecosystems. This study investigates the spatio-temporal variation characteristics of spring CTPEEs in China, including warm-dry, warm-wet, cold-dry, and cold-wet combinations. The compound cold-wet extreme events occur most frequently, followed by warm-dry, warm-wet, and cold-dry events. The frequency of CTPEEs associated with warm (cold) extremes shows a marked interdecadal increase (decrease) around the mid-to-late 1990s. It is found that the interdecadal change in CTPEEs is primarily determined by the variation in temperature extremes. This interdecadal shift coincides with the phase transitions of the Atlantic Multidecadal Oscillation (AMO) and the Interdecadal Pacific Oscillation (IPO). After the mid-to-late 1990s, the configuration of a positive AMO and a negative IPO excited atmospheric wave trains over mid-high latitudes, causing high-pressure and anticyclonic anomalies over East Asia. This leads to less cloudiness, allowing an increase in downward solar radiation, which enhances surface warming and contributes to an increase (decrease) in warm-dry and warm-wet extremes. The above observations are confirmed by the Pacemaker experiments. The results of this study highlight a significant contribution of internal climate variability to interdecadal changes in CTPEEs at the regional scale.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042503","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The concurrent occurrence of temperature and precipitation extremes, known as compound temperature-precipitation extreme events (CTPEEs), leads to more pronounced consequences for human society and ecosystems than when these extremes occur separately. However, such compound extremes have not been sufficiently studied, especially during boreal spring. Spring is an important transition season, during which the CTPEEs plays a pivotal role in plant growth and revival of terrestrial ecosystems. This study investigates the spatio-temporal variation characteristics of spring CTPEEs in China, including warm-dry, warm-wet, cold-dry, and cold-wet combinations. The compound cold-wet extreme events occur most frequently, followed by warm-dry, warm-wet, and cold-dry events. The frequency of CTPEEs associated with warm (cold) extremes shows a marked interdecadal increase (decrease) around the mid-to-late 1990s. It is found that the interdecadal change in CTPEEs is primarily determined by the variation in temperature extremes. This interdecadal shift coincides with the phase transitions of the Atlantic Multidecadal Oscillation (AMO) and the Interdecadal Pacific Oscillation (IPO). After the mid-to-late 1990s, the configuration of a positive AMO and a negative IPO excited atmospheric wave trains over mid-high latitudes, causing high-pressure and anticyclonic anomalies over East Asia. This leads to less cloudiness, allowing an increase in downward solar radiation, which enhances surface warming and contributes to an increase (decrease) in warm-dry and warm-wet extremes. The above observations are confirmed by the Pacemaker experiments. The results of this study highlight a significant contribution of internal climate variability to interdecadal changes in CTPEEs at the regional scale.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Multiscale WRF Modeling of Meso- to Micro-Scale Flows During Sundowner Events Overlooked Contribution of Salt Lake Emissions: A Case Study of Dust Deposition From the Qinghai-Xizang Plateau Mechanisms Behind the Long-Distance Diurnal Offshore Precipitation Propagation in Northwestern South America Relative Importance of Mid-Level and Low-Level Vortices in Tropical Cyclogenesis Inferred From Experiments on Sensitivity to Radiation Impact of Early Winter Antarctic Sea Ice Reduction on Antarctic Stratospheric Polar Vortex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1