{"title":"Fatigue Assessment of Copper-Brazed Stainless-Steel Joints for Plate Heat Exchangers","authors":"Yiğit Hayta, Sinan Kandemir","doi":"10.1111/ffe.14509","DOIUrl":null,"url":null,"abstract":"<p>Cyclic pressures can cause fatigue failure in the brazed joints and plates of the plate heat exchangers (PHEs). This study examines the fatigue behavior of PHEs made from 316L and 304L steels brazed with copper foils employing strain-controlled fatigue tests to explore if 304L could replace 316L in the existing production line for cost reduction. Fatigue tests were conducted at four different load levels with a stress ratio of zero and a frequency of 5 Hz. Finite Element Analysis was used to assess strain distribution and estimate PHE lifespan based on generated strain versus number of cycles to failure curves. The microstructural analysis revealed that copper diffuses more easily into 316L than 304L, and using 50 μm thick foil causes more defects compared with 100 μm foil. It was shown that 316L joints have a significantly increased fatigue life compared with 304L. Both 316L and 304L met the 15-year lifetime requirement set by manufacturers.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"725-737"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14509","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14509","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclic pressures can cause fatigue failure in the brazed joints and plates of the plate heat exchangers (PHEs). This study examines the fatigue behavior of PHEs made from 316L and 304L steels brazed with copper foils employing strain-controlled fatigue tests to explore if 304L could replace 316L in the existing production line for cost reduction. Fatigue tests were conducted at four different load levels with a stress ratio of zero and a frequency of 5 Hz. Finite Element Analysis was used to assess strain distribution and estimate PHE lifespan based on generated strain versus number of cycles to failure curves. The microstructural analysis revealed that copper diffuses more easily into 316L than 304L, and using 50 μm thick foil causes more defects compared with 100 μm foil. It was shown that 316L joints have a significantly increased fatigue life compared with 304L. Both 316L and 304L met the 15-year lifetime requirement set by manufacturers.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.