{"title":"Improving the Accuracy of Flood Damage Assessments to Residential Structures via the Use of Experimental Data","authors":"Anna Katya Opel, Elizabeth Chisolm Matthews","doi":"10.1111/jfr3.70003","DOIUrl":null,"url":null,"abstract":"<p>The current practice of flood loss prediction presents limitations in accurately predicting building flood losses at multiple scales. While whole-building estimates can more accurately predict high-level losses (i.e., large groups of buildings), a significant analysis error is revealed with small-scale (i.e., individual, or small groups of buildings) investigation. This research presents a more robust, data driven, small-scale, flood damage estimation approach for residential buildings. The approach is based on component-level, depth–damage curves derived from experimental analysis. Structures with standard residential construction materials typical to the south-eastern United States were built and incrementally flooded for short durations. The materials were assessed to determine the level of damage inflicted. This experimentally derived damage data were then translated into a set of flood depth–damage functions (DDFs). The DDFs were tailored for analysis at smaller scales and incorporated the ability to apply damage uncertainty in damage analysis. To demonstrate the applicability of the experimentally derived DDFs to damage estimation at smaller scales, the functions are applied to a hypothetical building design typical of the south-eastern United States.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70003","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The current practice of flood loss prediction presents limitations in accurately predicting building flood losses at multiple scales. While whole-building estimates can more accurately predict high-level losses (i.e., large groups of buildings), a significant analysis error is revealed with small-scale (i.e., individual, or small groups of buildings) investigation. This research presents a more robust, data driven, small-scale, flood damage estimation approach for residential buildings. The approach is based on component-level, depth–damage curves derived from experimental analysis. Structures with standard residential construction materials typical to the south-eastern United States were built and incrementally flooded for short durations. The materials were assessed to determine the level of damage inflicted. This experimentally derived damage data were then translated into a set of flood depth–damage functions (DDFs). The DDFs were tailored for analysis at smaller scales and incorporated the ability to apply damage uncertainty in damage analysis. To demonstrate the applicability of the experimentally derived DDFs to damage estimation at smaller scales, the functions are applied to a hypothetical building design typical of the south-eastern United States.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.