Computational Design of Hydrogenated Monolayer Pyrite for Enhanced Energy Storage

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Advanced Sustainable Systems Pub Date : 2024-10-15 DOI:10.1002/adsu.202400421
Pedro Guerra Demingos, Adwitiya Rao, Chandra Veer Singh
{"title":"Computational Design of Hydrogenated Monolayer Pyrite for Enhanced Energy Storage","authors":"Pedro Guerra Demingos,&nbsp;Adwitiya Rao,&nbsp;Chandra Veer Singh","doi":"10.1002/adsu.202400421","DOIUrl":null,"url":null,"abstract":"<p>In the search for clean energy technologies, it is crucial to develop low-cost batteries with enhanced performance, and 2D materials are promising for electrode applications owing to their high surface area where fast ionic diffusion can occur. In this work, density functional theory calculations that demonstrate the great potential of recently synthesized 2D pyrite as a battery electrode are reported. An extensive analysis of its performance toward Li-ion batteries and post-lithium technologies (Na, K, Mg, Ca, Zn, Al), as well as how point defects can be leveraged to engineer its electronic properties are reported. First, the results explain that the main drawback of the unmodified material, namely its voltammetric peaks at high voltages, is due to the overly strong adsorption of lithium ions. Second, it is demonstrated that hydrogenation of the material leads to milder open-circuit voltages without compromising the capacity of the anode, and lowers the diffusion barrier to only 0.06eV for both Li and K ions. With a capacity as high as 1317 mAh g<sup>−1</sup> for Al-ion, hydrogenated monolayer pyrite is demonstrated to be a promising material for energy storage applications.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400421","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400421","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the search for clean energy technologies, it is crucial to develop low-cost batteries with enhanced performance, and 2D materials are promising for electrode applications owing to their high surface area where fast ionic diffusion can occur. In this work, density functional theory calculations that demonstrate the great potential of recently synthesized 2D pyrite as a battery electrode are reported. An extensive analysis of its performance toward Li-ion batteries and post-lithium technologies (Na, K, Mg, Ca, Zn, Al), as well as how point defects can be leveraged to engineer its electronic properties are reported. First, the results explain that the main drawback of the unmodified material, namely its voltammetric peaks at high voltages, is due to the overly strong adsorption of lithium ions. Second, it is demonstrated that hydrogenation of the material leads to milder open-circuit voltages without compromising the capacity of the anode, and lowers the diffusion barrier to only 0.06eV for both Li and K ions. With a capacity as high as 1317 mAh g−1 for Al-ion, hydrogenated monolayer pyrite is demonstrated to be a promising material for energy storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
期刊最新文献
Issue Information 3D Printed Biodegradable Soft Actuators from Nanocellulose Reinforced Gelatin Composites (Adv. Sustainable Syst. 2/2025) Issue Information Straightforward Synthesis Methodology for Obtaining Excellent ORR Electrocatalysts From Biomass Residues Through a One Pot-High Temperature Treatment Approach (Adv. Sustainable Syst. 1/2025) Phenothiazine-Modified PTAA Hole Transporting Materials for Flexible Perovskite Solar Cells: A Trade-Off Between Performance and Sustainability (Adv. Sustainable Syst. 1/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1