Enhancing the Performance of Concrete Coupled Shearwall Using Shape Memory Alloys

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2025-01-16 DOI:10.1002/eng2.13094
Hamidreza Nasiri, Mehdi Ghassemieh
{"title":"Enhancing the Performance of Concrete Coupled Shearwall Using Shape Memory Alloys","authors":"Hamidreza Nasiri,&nbsp;Mehdi Ghassemieh","doi":"10.1002/eng2.13094","DOIUrl":null,"url":null,"abstract":"<p>Utilizing self-centering materials, such as shape memory alloys (SMA), as reinforcement in concrete structures can positively influence their performance during and after earthquakes. Despite the high cost of SMAs, their unique flag-shaped stress–strain behavior and effective energy dissipation make them an attractive material choice in some structures. This study evaluates the application of iron-based SMAs in enhancing the seismic performance of coupled concrete shear walls. The purpose is to identify optimal SMA placement strategies within the walls' plastic hinges to improve energy dissipation, reduce residual drift, and enhance ductility. This research explores pre-tensioned and non-pre-tensioned SMA configurations through macro-element modeling and cyclic analysis. Presenting a comparative framework that balances material efficiency and structural performance differentiates this study from prior studies focused predominantly on SMA benefits in isolated structural applications. Two optimization scenarios are proposed: maximizing energy dissipation and minimizing residual drift, and reducing SMA usage while maintaining structural efficiency. The results indicate that pre-tensioned SMAs in the wall web provide the most significant improvement in seismic behavior, significantly reducing residual drift and increasing ductility. This approach offers a cost-effective solution for improving earthquake resilience in structures.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing self-centering materials, such as shape memory alloys (SMA), as reinforcement in concrete structures can positively influence their performance during and after earthquakes. Despite the high cost of SMAs, their unique flag-shaped stress–strain behavior and effective energy dissipation make them an attractive material choice in some structures. This study evaluates the application of iron-based SMAs in enhancing the seismic performance of coupled concrete shear walls. The purpose is to identify optimal SMA placement strategies within the walls' plastic hinges to improve energy dissipation, reduce residual drift, and enhance ductility. This research explores pre-tensioned and non-pre-tensioned SMA configurations through macro-element modeling and cyclic analysis. Presenting a comparative framework that balances material efficiency and structural performance differentiates this study from prior studies focused predominantly on SMA benefits in isolated structural applications. Two optimization scenarios are proposed: maximizing energy dissipation and minimizing residual drift, and reducing SMA usage while maintaining structural efficiency. The results indicate that pre-tensioned SMAs in the wall web provide the most significant improvement in seismic behavior, significantly reducing residual drift and increasing ductility. This approach offers a cost-effective solution for improving earthquake resilience in structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Evaluation of Mechanical Properties, Color Stability, and Cleaning Efficacy of BioMed Clear Resin-Based Dental Aligners A Semi-Analytic Hybrid Approach for Solving the Buckmaster Equation: Application of the Elzaki Projected Differential Transform Method (EPDTM) Harnessing Free Space Optics for Efficient 6G Fronthaul Networks: Challenges and Opportunities Deep Learning Based Visual Servo for Autonomous Aircraft Refueling Origin of the Paleocene Granite in the Lhasa Terrane of the Qinghai-Tibet Plateau and Its Constraints on the Evolution of the Neo-Tethys Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1