Atmospheric River Frequency-Category Characteristics Shape U.S. West Coast Runoff

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-01-16 DOI:10.1029/2024JD041805
Yang Zhou, Joshua S. North, Alan M. Rhoades, Jing Tao, William Rudisill, Mark D. Risser, William D. Collins
{"title":"Atmospheric River Frequency-Category Characteristics Shape U.S. West Coast Runoff","authors":"Yang Zhou,&nbsp;Joshua S. North,&nbsp;Alan M. Rhoades,&nbsp;Jing Tao,&nbsp;William Rudisill,&nbsp;Mark D. Risser,&nbsp;William D. Collins","doi":"10.1029/2024JD041805","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the factors influencing runoff response to atmospheric rivers (ARs) over the U.S. West Coast. We focused on runoff time series variations impacted by AR characteristics (e.g., category and frequency) and land preconditions during Northern Hemisphere cool seasons in the period of 1940–2023. Results show that high-category ARs significantly increase local runoff with higher hourly precipitation rates leading to a greater incremental rate and peak runoff. Extreme runoff increases greatly with the AR category with an increase rate up to 12.5 times stronger than non-extreme runoff. Besides the AR category, land preconditions such as soil moisture and snowpack also play crucial roles in modulating runoff response. We found that runoff induced by weak-category ARs is more sensitive to land preconditions than high-category ARs, with high peak runoff occurring when soil is nearly saturated. Additionally, more than 50% of high-peak-runoff events in snow-covered grid cells are associated with rain-on-snow events particularly for the events associated with weaker ARs. Regression analysis reveals that AR precipitation and land preconditions jointly influence runoff, emphasizing the importance of including soil moisture and snowpack levels in AR impact assessments. The study also highlights the intensified runoff response to back-to-back ARs with short intervals, which may become more frequent with climate warming, posing increased flood risks via facilitating wet soil conditions. Our findings have significant implications for AR risk predictions and the development of prediction models for AR-induced runoff.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041805","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041805","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the factors influencing runoff response to atmospheric rivers (ARs) over the U.S. West Coast. We focused on runoff time series variations impacted by AR characteristics (e.g., category and frequency) and land preconditions during Northern Hemisphere cool seasons in the period of 1940–2023. Results show that high-category ARs significantly increase local runoff with higher hourly precipitation rates leading to a greater incremental rate and peak runoff. Extreme runoff increases greatly with the AR category with an increase rate up to 12.5 times stronger than non-extreme runoff. Besides the AR category, land preconditions such as soil moisture and snowpack also play crucial roles in modulating runoff response. We found that runoff induced by weak-category ARs is more sensitive to land preconditions than high-category ARs, with high peak runoff occurring when soil is nearly saturated. Additionally, more than 50% of high-peak-runoff events in snow-covered grid cells are associated with rain-on-snow events particularly for the events associated with weaker ARs. Regression analysis reveals that AR precipitation and land preconditions jointly influence runoff, emphasizing the importance of including soil moisture and snowpack levels in AR impact assessments. The study also highlights the intensified runoff response to back-to-back ARs with short intervals, which may become more frequent with climate warming, posing increased flood risks via facilitating wet soil conditions. Our findings have significant implications for AR risk predictions and the development of prediction models for AR-induced runoff.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
The Response of Tropical Cyclone Inner Core and Outer Rainband Precipitation to Warming in Idealized Convection-Permitting WRF Atmospheric Response to Mesoscale Ocean Eddies in the Maritime Continent Diurnal Trends and Meteorological Factors Influencing the Variability of Fluorescent Bioaerosol in Mt. Crested Butte, Colorado During SAIL Pleistocene Global Cooling Did Not Weaken the East Asian Summer Monsoon Decoding the Relationship Between Cloud Electrification, Downdrafts, and Surface Ozone in the Amazon Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1