Rotating Bending Fatigue of Laser Powder Bed Fused 316L Stainless Steel at Various Stress Levels: Microstructural Evaluation and Predictive Modeling

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-11-17 DOI:10.1111/ffe.14501
Yahya Aghayar, Alireza Behvar, Meysam Haghshenas, Mohsen Mohammadi
{"title":"Rotating Bending Fatigue of Laser Powder Bed Fused 316L Stainless Steel at Various Stress Levels: Microstructural Evaluation and Predictive Modeling","authors":"Yahya Aghayar,&nbsp;Alireza Behvar,&nbsp;Meysam Haghshenas,&nbsp;Mohsen Mohammadi","doi":"10.1111/ffe.14501","DOIUrl":null,"url":null,"abstract":"<p>This research studies the effect of variable stress levels on the rotating bending fatigue (RBF) tests of 316L stainless steel fabricated by the laser powder bed fusion (LPBF) method. The mechanical properties and fatigue behavior were evaluated to ascertain the correlation between the applied stress levels and microstructural changes that occurred during the fatigue experiments. These relationships were further investigated using a classical model developed on the Python platform. The microstructural analysis demonstrated that the face-centered cubic structure was maintained throughout the application of stresses, varying from 255 to 402 MPa along with no phase changes. Nevertheless, the density of shear lines on the surface was substantially influenced by variations in stress levels as demonstrated by high-stress areas in Kernel average misorientation maps. At lower stress levels, the model analysis exhibited a higher degree of reliability, with <i>R</i><sup>2</sup> values of 96.25% at lower stress rather than 89.30% at higher stress.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"783-796"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14501","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research studies the effect of variable stress levels on the rotating bending fatigue (RBF) tests of 316L stainless steel fabricated by the laser powder bed fusion (LPBF) method. The mechanical properties and fatigue behavior were evaluated to ascertain the correlation between the applied stress levels and microstructural changes that occurred during the fatigue experiments. These relationships were further investigated using a classical model developed on the Python platform. The microstructural analysis demonstrated that the face-centered cubic structure was maintained throughout the application of stresses, varying from 255 to 402 MPa along with no phase changes. Nevertheless, the density of shear lines on the surface was substantially influenced by variations in stress levels as demonstrated by high-stress areas in Kernel average misorientation maps. At lower stress levels, the model analysis exhibited a higher degree of reliability, with R2 values of 96.25% at lower stress rather than 89.30% at higher stress.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Fatigue Design Curves for Industrial Applications: A Review A High Load Clipping Criterion Based on the Probabilistic Extreme Load of Fatigue Spectrum The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1