{"title":"Rotating Bending Fatigue of Laser Powder Bed Fused 316L Stainless Steel at Various Stress Levels: Microstructural Evaluation and Predictive Modeling","authors":"Yahya Aghayar, Alireza Behvar, Meysam Haghshenas, Mohsen Mohammadi","doi":"10.1111/ffe.14501","DOIUrl":null,"url":null,"abstract":"<p>This research studies the effect of variable stress levels on the rotating bending fatigue (RBF) tests of 316L stainless steel fabricated by the laser powder bed fusion (LPBF) method. The mechanical properties and fatigue behavior were evaluated to ascertain the correlation between the applied stress levels and microstructural changes that occurred during the fatigue experiments. These relationships were further investigated using a classical model developed on the Python platform. The microstructural analysis demonstrated that the face-centered cubic structure was maintained throughout the application of stresses, varying from 255 to 402 MPa along with no phase changes. Nevertheless, the density of shear lines on the surface was substantially influenced by variations in stress levels as demonstrated by high-stress areas in Kernel average misorientation maps. At lower stress levels, the model analysis exhibited a higher degree of reliability, with <i>R</i><sup>2</sup> values of 96.25% at lower stress rather than 89.30% at higher stress.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 2","pages":"783-796"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14501","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14501","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research studies the effect of variable stress levels on the rotating bending fatigue (RBF) tests of 316L stainless steel fabricated by the laser powder bed fusion (LPBF) method. The mechanical properties and fatigue behavior were evaluated to ascertain the correlation between the applied stress levels and microstructural changes that occurred during the fatigue experiments. These relationships were further investigated using a classical model developed on the Python platform. The microstructural analysis demonstrated that the face-centered cubic structure was maintained throughout the application of stresses, varying from 255 to 402 MPa along with no phase changes. Nevertheless, the density of shear lines on the surface was substantially influenced by variations in stress levels as demonstrated by high-stress areas in Kernel average misorientation maps. At lower stress levels, the model analysis exhibited a higher degree of reliability, with R2 values of 96.25% at lower stress rather than 89.30% at higher stress.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.