Frank N. Crespilho, Carlos M. Costa, Senentxu Lanceros-Méndez
{"title":"Sustainable Battery Biomaterials","authors":"Frank N. Crespilho, Carlos M. Costa, Senentxu Lanceros-Méndez","doi":"10.1002/celc.202400530","DOIUrl":null,"url":null,"abstract":"<p>The future of energy storage demands not just efficiency but sustainability. Current battery technologies, relying on finite resources materials, face critical challenges related to environmental impact and safety. This Perspective explores the transformative potential of biomaterials – specifically biopolymers, bioinspired redox molecules, and bio-derived gels – in contributing to sustainable energy storage. Highlighting recent advancements, we focus on the integration of natural and bioinspired materials as binders, electrodes, and electrolytes. These innovations present viable alternatives to traditional, non-biodegradable battery components while opening new frontiers in 3D printing, bio-based thick electrodes, and solid-state electrolytes. Despite challenges such as scalability and long-term stability, biomaterials hold the key to reshaping the landscape of energy storage technologies, offering a path toward a greener, safer, and more efficient future.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400530","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The future of energy storage demands not just efficiency but sustainability. Current battery technologies, relying on finite resources materials, face critical challenges related to environmental impact and safety. This Perspective explores the transformative potential of biomaterials – specifically biopolymers, bioinspired redox molecules, and bio-derived gels – in contributing to sustainable energy storage. Highlighting recent advancements, we focus on the integration of natural and bioinspired materials as binders, electrodes, and electrolytes. These innovations present viable alternatives to traditional, non-biodegradable battery components while opening new frontiers in 3D printing, bio-based thick electrodes, and solid-state electrolytes. Despite challenges such as scalability and long-term stability, biomaterials hold the key to reshaping the landscape of energy storage technologies, offering a path toward a greener, safer, and more efficient future.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.