Location of grid forming converters when dealing with multi-class stability problems

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2025-01-20 DOI:10.1049/gtd2.13312
Francisco Fernandes, João Peças Lopes, Carlos Moreira
{"title":"Location of grid forming converters when dealing with multi-class stability problems","authors":"Francisco Fernandes,&nbsp;João Peças Lopes,&nbsp;Carlos Moreira","doi":"10.1049/gtd2.13312","DOIUrl":null,"url":null,"abstract":"<p>This work proposes an innovative methodology for the optimal placement of grid-forming converters (GFM) in converter-dominated grids while accounting for multiple stability classes. A heuristic-based methodology is proposed to solve an optimisation problem whose objective function encompasses up to 4 stability indices obtained through the simulation of a shortlist of disturbances. The proposed methodology was employed in a modified version of the 39-bus test system, using DigSILENT Power Factory as the simulation engine. First, the GFM placement problem is solved individually for the different stability classes to highlight the underlying physical phenomena that explain the optimality of the solutions and evidence the need for a multi-class approach. Second, a multi-class approach that combines the different stability indices through linear scalarisation (weights), using the normalised distance of each index to its limit as a way to define its importance, is adopted. For all the proposed fitness function formulations, the method successfully converged to a balanced solution among the various stability classes, thereby enhancing overall system stability.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13312","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes an innovative methodology for the optimal placement of grid-forming converters (GFM) in converter-dominated grids while accounting for multiple stability classes. A heuristic-based methodology is proposed to solve an optimisation problem whose objective function encompasses up to 4 stability indices obtained through the simulation of a shortlist of disturbances. The proposed methodology was employed in a modified version of the 39-bus test system, using DigSILENT Power Factory as the simulation engine. First, the GFM placement problem is solved individually for the different stability classes to highlight the underlying physical phenomena that explain the optimality of the solutions and evidence the need for a multi-class approach. Second, a multi-class approach that combines the different stability indices through linear scalarisation (weights), using the normalised distance of each index to its limit as a way to define its importance, is adopted. For all the proposed fitness function formulations, the method successfully converged to a balanced solution among the various stability classes, thereby enhancing overall system stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本研究提出了一种创新方法,用于在以变流器为主的电网中优化布置并网变流器(GFM),同时考虑多个稳定性等级。提出了一种基于启发式的方法来解决优化问题,其目标函数包含通过模拟干扰短名单获得的多达 4 个稳定性指数。所提出的方法被用于 39 总线测试系统的改进版本,并使用 DigSILENT Power Factory 作为仿真引擎。首先,对不同稳定性等级的 GFM 布置问题进行单独求解,以突出解释解决方案最优性的基本物理现象,并证明采用多等级方法的必要性。其次,采用一种多类别方法,通过线性标量化(权重)将不同的稳定性指数结合起来,使用每个指数与其极限的归一化距离来定义其重要性。对于所有建议的拟合函数公式,该方法都成功地收敛到了不同稳定性等级之间的平衡解决方案,从而提高了系统的整体稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Virtual power line control for interlinking converters on AC, DC and hybrid grid links Distributionally robust optimal power flow based on multi-transport hyperrectangle ambiguity set Harnessing solar power with adaptive control of PV-enriched microgrids using A3C-driven deep reinforcement learning Analysis of broadband oscillation mechanisms in grid-forming and grid-following converters based on virtual synchronous generator A state-variable-preserving method for the efficient modelling of inverter-based resources in parallel EMT simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1