Pengcheng Zhang, Jianyu Wang, Yajuan Liu, Sangmoon Lee
{"title":"Event-Triggered Generalized Extended State Observer-Based Control for Nonlinear Networked Systems Under Gain Variation and Multi-Channel Attacks","authors":"Pengcheng Zhang, Jianyu Wang, Yajuan Liu, Sangmoon Lee","doi":"10.1002/rnc.7681","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper investigates the event-triggered generalized extended state observer-based estimation issue for a class of nonlinear networked control systems with unmodeled dynamics, external disturbances and multi-channel attacks. In order to resist different forms of attack threats on multiple communication channels from sensors to the observer, Markov chain is introduced to describe the stochastic switching or jumping behavior between different attack modes. Considering the limited network resources, the measured outputs are transmitted to the observer only when the triggering conditions are met. Moreover, the parameters modeled by the Bernoulli process are adopted to help analyze potential random gain variations of the generalized extended state observer. By employing Lyapunov stability theory and stochastic systems analysis, sufficient conditions are derived to ensure that the augmented system is exponentially bounded in mean square, and the expected observer gains are further determined through linear matrix inequalities. Finally, a numerical example and a simulation related to the RLC series circuit system are conducted, illustrating the proposed method's effectiveness.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 3","pages":"828-842"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7681","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the event-triggered generalized extended state observer-based estimation issue for a class of nonlinear networked control systems with unmodeled dynamics, external disturbances and multi-channel attacks. In order to resist different forms of attack threats on multiple communication channels from sensors to the observer, Markov chain is introduced to describe the stochastic switching or jumping behavior between different attack modes. Considering the limited network resources, the measured outputs are transmitted to the observer only when the triggering conditions are met. Moreover, the parameters modeled by the Bernoulli process are adopted to help analyze potential random gain variations of the generalized extended state observer. By employing Lyapunov stability theory and stochastic systems analysis, sufficient conditions are derived to ensure that the augmented system is exponentially bounded in mean square, and the expected observer gains are further determined through linear matrix inequalities. Finally, a numerical example and a simulation related to the RLC series circuit system are conducted, illustrating the proposed method's effectiveness.
期刊介绍:
Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.