Hydrogenation Strategy for Al2O3/MoOx Passivating Contact in High-Efficiency Crystalline Silicon Solar Cells

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-11-22 DOI:10.1002/solr.202400740
Yuner Luo, Yanhao Wang, Siyi Liu, Shaojuan Bao, Jilei Wang, Shan-Ting Zhang, Li Tian, Shihua Huang, Dongdong Li
{"title":"Hydrogenation Strategy for Al2O3/MoOx Passivating Contact in High-Efficiency Crystalline Silicon Solar Cells","authors":"Yuner Luo,&nbsp;Yanhao Wang,&nbsp;Siyi Liu,&nbsp;Shaojuan Bao,&nbsp;Jilei Wang,&nbsp;Shan-Ting Zhang,&nbsp;Li Tian,&nbsp;Shihua Huang,&nbsp;Dongdong Li","doi":"10.1002/solr.202400740","DOIUrl":null,"url":null,"abstract":"<p>Enhancing carrier selectivity and minimizing surface recombination are crucial factors for improving the efficiency of passivating contact crystalline silicon (c-Si) solar cells. This study introduces a two-step hydrogenation method, using atomic layer deposition of Al<sub>2</sub>O<sub>3</sub> and forming gas annealing (FGA), in order to optimize the passivating contact stack. This approach not only improves the passivation quality but also reduces the contact resistance in the presence of a MoO<sub><i>x</i></sub> transport layer. However, excess hydrogen in Al<sub>2</sub>O<sub>3</sub> could potentially diffuse into MoO<sub><i>x</i></sub>, reducing its work function and diminishing the field-effect passivation. By fine-tuning the FGA parameters, including temperature and duration, a conversion efficiency of 21.33% is achieved on p-type silicon. These results demonstrate a novel optimization strategy for passivation tunneling layers, with the potential to improve the performance of c-Si and other types of solar cells.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400740","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing carrier selectivity and minimizing surface recombination are crucial factors for improving the efficiency of passivating contact crystalline silicon (c-Si) solar cells. This study introduces a two-step hydrogenation method, using atomic layer deposition of Al2O3 and forming gas annealing (FGA), in order to optimize the passivating contact stack. This approach not only improves the passivation quality but also reduces the contact resistance in the presence of a MoOx transport layer. However, excess hydrogen in Al2O3 could potentially diffuse into MoOx, reducing its work function and diminishing the field-effect passivation. By fine-tuning the FGA parameters, including temperature and duration, a conversion efficiency of 21.33% is achieved on p-type silicon. These results demonstrate a novel optimization strategy for passivation tunneling layers, with the potential to improve the performance of c-Si and other types of solar cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效晶体硅太阳能电池中 Al2O3/MoOx 钝化接触的氢化策略
提高载流子选择性和减少表面复合是提高接触式晶体硅(c-Si)太阳电池钝化效率的关键因素。为了优化钝化接触层,本文介绍了一种利用Al2O3原子层沉积和成形气体退火(FGA)两步加氢的方法。这种方法不仅提高了钝化质量,而且降低了MoOx传输层存在时的接触电阻。然而,Al2O3中过量的氢可能会扩散到MoOx中,降低其功函数并减弱场效应钝化。通过调整温度和持续时间等参数,在p型硅上实现了21.33%的转换效率。这些结果展示了一种新的钝化隧道层优化策略,具有提高c-Si和其他类型太阳能电池性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
High Voltage Vapor-Deposited CsPbBr3 Inorganic Perovskite Solar Cells by CdCl2 Passivation Solution-Processed Magnesium Oxide Buffer Layer for Improved Stability of CsPbI2Br Perovskite Solar Cells An Electron Springboard in a Cascaded Acceptor D-π-A1-A2 Photosystems for Enhanced Photocatalytic H2 Evolution Silver Substitutional Doping to Enhance the Photoelectrochemical Properties of BiFeO3 Photocathodes via Promoting Photon Absorption and Bulk Carrier Transport Isomer-Induced Steric Effects on Coordination Site Modification for Interface Passivation in Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1