Shuguo Gao, Haoyu Liu, Qian Zang, Meng Guo, Gang Liu, Zhigang Zhang, Lujian Dai, Yunpeng Liu
{"title":"Fast calculation method of transformer harmonic magnetic field based on radial basis function augmented surrogate model","authors":"Shuguo Gao, Haoyu Liu, Qian Zang, Meng Guo, Gang Liu, Zhigang Zhang, Lujian Dai, Yunpeng Liu","doi":"10.1049/elp2.12544","DOIUrl":null,"url":null,"abstract":"<p>Accurate and efficient calculation of a transformer's magnetic field is fundamental for the rapid calculation of its losses, temperature rise, and structural forces. However, existing numerical methods for calculating the harmonic magnetic field of a product-level transformer are time-consuming and fail to meet the rapid requirements of digital operations and maintenance. To address this, this paper first utilises the harmonic field method to obtain the snapshot matrix of the transformer's magnetic field. Subsequently, a response surface model of the magnetic field is constructed using intrinsic quadrature theory and radial basis functions in the augmented form. To enhance the efficiency of constructing the reduced-order model, an adaptive Latin hypercube sampling method, integrating the additive rule and leave-one-out cross-validation, is introduced, significantly improving the efficiency of sample space construction. The effectiveness of the proposed method is validated by applying the proper orthogonal decomposition-radial basis function including linear polynomial (POD-RBFLP) method to calculate the harmonic magnetic field of a three-phase power transformer in reduced order. The results are compared with those from COMSOL calculations, showing that the reduced-order model maintains the calculation error within a reasonable range, thereby confirming the accuracy of the proposed method. Additionally, the reduced-order model demonstrates a significant advantage in computation time compared to COMSOL simulations, enabling the calculation of the transformer's magnetic field in seconds.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12544","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and efficient calculation of a transformer's magnetic field is fundamental for the rapid calculation of its losses, temperature rise, and structural forces. However, existing numerical methods for calculating the harmonic magnetic field of a product-level transformer are time-consuming and fail to meet the rapid requirements of digital operations and maintenance. To address this, this paper first utilises the harmonic field method to obtain the snapshot matrix of the transformer's magnetic field. Subsequently, a response surface model of the magnetic field is constructed using intrinsic quadrature theory and radial basis functions in the augmented form. To enhance the efficiency of constructing the reduced-order model, an adaptive Latin hypercube sampling method, integrating the additive rule and leave-one-out cross-validation, is introduced, significantly improving the efficiency of sample space construction. The effectiveness of the proposed method is validated by applying the proper orthogonal decomposition-radial basis function including linear polynomial (POD-RBFLP) method to calculate the harmonic magnetic field of a three-phase power transformer in reduced order. The results are compared with those from COMSOL calculations, showing that the reduced-order model maintains the calculation error within a reasonable range, thereby confirming the accuracy of the proposed method. Additionally, the reduced-order model demonstrates a significant advantage in computation time compared to COMSOL simulations, enabling the calculation of the transformer's magnetic field in seconds.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf