Investigation of the Thickness Effects on Three-Dimensional Fracture Toughness in Metallic Materials via the Phase-Field Model

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-12-22 DOI:10.1111/ffe.14524
Junling Hou, Yinghao Zhang, Jiatong Tan, Xingming Peng, Qun Li, Chunguang Wang
{"title":"Investigation of the Thickness Effects on Three-Dimensional Fracture Toughness in Metallic Materials via the Phase-Field Model","authors":"Junling Hou,&nbsp;Yinghao Zhang,&nbsp;Jiatong Tan,&nbsp;Xingming Peng,&nbsp;Qun Li,&nbsp;Chunguang Wang","doi":"10.1111/ffe.14524","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the wide application of large wall-thickness metallic structures in engineering, there has been a growing focus on the three-dimensional fracture issues associated with these materials. This article uses the phase-field model to investigate the impact of thickness on elastic–plastic metallic materials. Initially, the fracture toughness of metallic materials in three dimensions is calculated under elastic deformation. The findings reveal that the outcomes obtained from the phase-field model remain consistent regardless of thickness, thus confirming its effectiveness. Subsequently, the study delves into the three-dimensional fracture behavior of metallic materials during plastic deformation. It illustrates how the phase–field model approach enables a thorough simulation of crack propagation within these materials, offering a comprehensive understanding of their fracture behavior. By analyzing the phase-field contour, the thickness effects of three-point bending specimens during crack growth are effectively captured. In addition, the dimensionless fracture toughness ratio trends with thickness are compared between phase-field modeling and experimental results in the open literature, showing good agreement.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1215-1235"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14524","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the wide application of large wall-thickness metallic structures in engineering, there has been a growing focus on the three-dimensional fracture issues associated with these materials. This article uses the phase-field model to investigate the impact of thickness on elastic–plastic metallic materials. Initially, the fracture toughness of metallic materials in three dimensions is calculated under elastic deformation. The findings reveal that the outcomes obtained from the phase-field model remain consistent regardless of thickness, thus confirming its effectiveness. Subsequently, the study delves into the three-dimensional fracture behavior of metallic materials during plastic deformation. It illustrates how the phase–field model approach enables a thorough simulation of crack propagation within these materials, offering a comprehensive understanding of their fracture behavior. By analyzing the phase-field contour, the thickness effects of three-point bending specimens during crack growth are effectively captured. In addition, the dimensionless fracture toughness ratio trends with thickness are compared between phase-field modeling and experimental results in the open literature, showing good agreement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Fatigue Design Curves for Industrial Applications: A Review A High Load Clipping Criterion Based on the Probabilistic Extreme Load of Fatigue Spectrum The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1