Harnessing the gut microbiome to enhance cancer immunotherapy: Current advances and future directions in microbiota-based therapeutic strategies

Binyan Zhao, Bailing Zhou, Qing Li, Chunyan Su, Jing Ma, Li Yang
{"title":"Harnessing the gut microbiome to enhance cancer immunotherapy: Current advances and future directions in microbiota-based therapeutic strategies","authors":"Binyan Zhao,&nbsp;Bailing Zhou,&nbsp;Qing Li,&nbsp;Chunyan Su,&nbsp;Jing Ma,&nbsp;Li Yang","doi":"10.1002/mef2.70006","DOIUrl":null,"url":null,"abstract":"<p>Cancer immunotherapies, developed on the basis of research into tumor escape mechanisms, manipulate the immune system to reactivate an antitumor immune response to recognize and attack cancer cells. Immunotherapy has demonstrated promising and exciting outcomes in the treatment of many cancers, yet not all patients experience favorable responses. The gut microbiota plays a critical role in modulating the host immune system, influencing responses to cancer immunotherapy. Research has increasingly demonstrated that specific microbial communities can increase the efficacy of immune checkpoint inhibitors, although the mechanisms involved remain under investigation. However, a clear gap exists in the understanding of how bacterial therapies can be further optimized for cancer treatment. This review provides an in-depth analysis of current bacterial therapies used in clinical trials as adjuncts to cancer immunotherapy, summarizing common research approaches and technologies utilized to investigate gut microbiota interactions with the immune system. Additionally, advanced strategies for modifying bacteria, including genetic engineering, surface modifications, and the development of bacterial derivatives, are discussed. By synthesizing these findings, this review highlights the potential of microbiota-based therapies to improve immunotherapy outcomes and offers future directions for improving clinical applications.</p>","PeriodicalId":74135,"journal":{"name":"MedComm - Future medicine","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mef2.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm - Future medicine","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mef2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer immunotherapies, developed on the basis of research into tumor escape mechanisms, manipulate the immune system to reactivate an antitumor immune response to recognize and attack cancer cells. Immunotherapy has demonstrated promising and exciting outcomes in the treatment of many cancers, yet not all patients experience favorable responses. The gut microbiota plays a critical role in modulating the host immune system, influencing responses to cancer immunotherapy. Research has increasingly demonstrated that specific microbial communities can increase the efficacy of immune checkpoint inhibitors, although the mechanisms involved remain under investigation. However, a clear gap exists in the understanding of how bacterial therapies can be further optimized for cancer treatment. This review provides an in-depth analysis of current bacterial therapies used in clinical trials as adjuncts to cancer immunotherapy, summarizing common research approaches and technologies utilized to investigate gut microbiota interactions with the immune system. Additionally, advanced strategies for modifying bacteria, including genetic engineering, surface modifications, and the development of bacterial derivatives, are discussed. By synthesizing these findings, this review highlights the potential of microbiota-based therapies to improve immunotherapy outcomes and offers future directions for improving clinical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
期刊最新文献
Long-Term Clinical Outcomes of Treatments for In-Stent Chronic Total Occlusions: A Real-World Study Based on Different Strategies of Revascularization Machine-learning-based integration of tumor microenvironment features predicting immunotherapy response COVID-19-Associated White Lung Correlates With the Dysfunctional Neutrophil Response Revealed by Single-Cell Immune Profiling Case series: Brolucizumab efficacy and safety in treating neovascular age-related macular degeneration Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1