{"title":"Deep Learning-Based Hydrological Drought Prediction in the Wardha River Basin, India","authors":"Mangala Janardhana, Ayilobeni Kikon","doi":"10.1002/clen.202300430","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Drought is an abnormal condition characterized by dry weather which can continue for days, months, and years. Drought often has major effects on the ecosystems and agriculture of vulnerable regions leading to catastrophe on the local economies. Deep learning was employed in this study to forecast hydrological drought in the Wardha River basin in Maharashtra, Vidarbha region, India. Monthly streamflow data from 1971 to 2020 for the Wardha River serve as the basis for analysis. The study calculates the standardized streamflow index (SSI) at several timescales (3, 6, 9, 12, and 24 months). Deep learning models, specifically the long short-term memory (LSTM) model and the multilayer perceptron (MLP) model, are employed for drought prediction within the study region. The models are trained with data spanning from 1971 to 2005 and tested against data from 2006 to 2020. Predictions are made for lead time scales of 6 and 12 months by considering lagged SSI values. Drought event lead time scale forecasts will serve as an early warning strategy. The 6- and 12-month lead times of the SSI forecast could be used as a warning for anticipated drought conditions. The study assesses model efficiency by comparing the root mean square error (RMSE) and mean absolute error (MAE) between the LSTM and MLP models. The results indicate that the LSTM model performs better for higher time scales in predicting hydrological drought, whereas the MLP model demonstrates superior predictive capabilities for lower time scales of drought index.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300430","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is an abnormal condition characterized by dry weather which can continue for days, months, and years. Drought often has major effects on the ecosystems and agriculture of vulnerable regions leading to catastrophe on the local economies. Deep learning was employed in this study to forecast hydrological drought in the Wardha River basin in Maharashtra, Vidarbha region, India. Monthly streamflow data from 1971 to 2020 for the Wardha River serve as the basis for analysis. The study calculates the standardized streamflow index (SSI) at several timescales (3, 6, 9, 12, and 24 months). Deep learning models, specifically the long short-term memory (LSTM) model and the multilayer perceptron (MLP) model, are employed for drought prediction within the study region. The models are trained with data spanning from 1971 to 2005 and tested against data from 2006 to 2020. Predictions are made for lead time scales of 6 and 12 months by considering lagged SSI values. Drought event lead time scale forecasts will serve as an early warning strategy. The 6- and 12-month lead times of the SSI forecast could be used as a warning for anticipated drought conditions. The study assesses model efficiency by comparing the root mean square error (RMSE) and mean absolute error (MAE) between the LSTM and MLP models. The results indicate that the LSTM model performs better for higher time scales in predicting hydrological drought, whereas the MLP model demonstrates superior predictive capabilities for lower time scales of drought index.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.