Cresten Moodley, Kaushik Mallick, Alfred Muller, D. Bradley G. Williams
{"title":"Transition- and Lanthanide-Metal-Based Coordination Polymers Offer Efficient Methylene Blue Adsorption","authors":"Cresten Moodley, Kaushik Mallick, Alfred Muller, D. Bradley G. Williams","doi":"10.1002/slct.202402762","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach toward wastewater remediation via the synthesis of a series of coordination polymers that combine benzene-1,4-dicarboxylic acid, benzene-1,4-dihydroxamic acid, and 5-nitroisophthalic acid linkers with Cu, Cr, Ce, and La metal salts to target efficient methylene blue removal. Through a detailed characterization process using techniques like ¹H NMR, PXRD, FTIR, TGA, SEM-EDX, ICP-OES, and BET, the structural and surface properties of these CPs were optimized for stability and enhanced adsorption performance. Notably, the CPs exhibited rapid MB adsorption within 10 min and followed pseudo-second-order kinetics, indicating a chemisorption-driven process. This work advances the field by demonstrating that increased pH significantly improves adsorption capacity and that the Sips model best describes the heterogeneous adsorptive behavior, highlighting a mixed Langmuir–Freundlich mechanism. Furthermore, stability and reusability studies revealed minimal metal leaching in the best-performing CPs, addressing critical environmental concerns around long-term CP use. This integrated approach not only fills vital knowledge gaps in CP-based dye adsorption kinetics but also underscores the potential of these materials as sustainable, scalable, and effective solutions for real-world water treatment applications.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/slct.202402762","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202402762","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach toward wastewater remediation via the synthesis of a series of coordination polymers that combine benzene-1,4-dicarboxylic acid, benzene-1,4-dihydroxamic acid, and 5-nitroisophthalic acid linkers with Cu, Cr, Ce, and La metal salts to target efficient methylene blue removal. Through a detailed characterization process using techniques like ¹H NMR, PXRD, FTIR, TGA, SEM-EDX, ICP-OES, and BET, the structural and surface properties of these CPs were optimized for stability and enhanced adsorption performance. Notably, the CPs exhibited rapid MB adsorption within 10 min and followed pseudo-second-order kinetics, indicating a chemisorption-driven process. This work advances the field by demonstrating that increased pH significantly improves adsorption capacity and that the Sips model best describes the heterogeneous adsorptive behavior, highlighting a mixed Langmuir–Freundlich mechanism. Furthermore, stability and reusability studies revealed minimal metal leaching in the best-performing CPs, addressing critical environmental concerns around long-term CP use. This integrated approach not only fills vital knowledge gaps in CP-based dye adsorption kinetics but also underscores the potential of these materials as sustainable, scalable, and effective solutions for real-world water treatment applications.
期刊介绍:
ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.