Magnetohydrodynamic Peristaltic Propulsion of Casson Nanofluids With Slip Effects Over Heterogeneous Rough Channel

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2024-12-25 DOI:10.1002/eng2.13062
Hanumesh Vaidya, Fateh Mebarek-Oudina, Rakesh Kumar, C. Rajashekhar, Kerehalli Vinayaka Prasad, Sangeeta Kalal, Kottakkaran Sooppy Nisar
{"title":"Magnetohydrodynamic Peristaltic Propulsion of Casson Nanofluids With Slip Effects Over Heterogeneous Rough Channel","authors":"Hanumesh Vaidya,&nbsp;Fateh Mebarek-Oudina,&nbsp;Rakesh Kumar,&nbsp;C. Rajashekhar,&nbsp;Kerehalli Vinayaka Prasad,&nbsp;Sangeeta Kalal,&nbsp;Kottakkaran Sooppy Nisar","doi":"10.1002/eng2.13062","DOIUrl":null,"url":null,"abstract":"<p>The significance of this study is to understand the complex interplay between fluid flow and surface roughness. Modeling surface roughness adds a new dimension for examining fluid dynamics, which is essential for understanding phenomena like drag force, heat transfer, and mass transfer. In this context, the aim of the present work focuses on modeling the magnetohydrodynamic peristaltic slip flow of Casson nanofluid and analyzing the role of multiple slip effects over a non-uniform rough channel. A novel rough non-uniform model is effectively governed by a set of nonlinear coupled governing partial differential equations, which are simplified under long wavelength and creeping flow approximations. The resulting simplified equations are solved numerically using Mathematica's built-in ND-Solve tool. The study primarily examines the velocity, temperature, and concentration profiles graphically for various pertinent physiological parameters. Additionally, engineering interests like skin friction coefficients, Nusselt numbers, and Sherwood numbers are reported in tabular form, revealing intrinsic flow oscillations. The results are further explored by analyzing pressure drop, friction force, and bolus shapes created by the sinusoidal motion of the fluid. Such insights are vital for comprehending internal fluctuations during peristaltic transport. In summary, skin friction and Nusselt numbers are typically higher for rough versus smooth surfaces. Also, roughness induces stresses, conductive-convective heat transfer, and viscous effects. Further, magnetically activated rough surfaces and nanoparticle interactions create flux balances. Magnetic effects reduce bolus size due to resistive forces. The findings of this study have important applications in biomedical engineering, aerospace engineering, heat transfer enhancement, and environmental remediation.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.13062","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.13062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The significance of this study is to understand the complex interplay between fluid flow and surface roughness. Modeling surface roughness adds a new dimension for examining fluid dynamics, which is essential for understanding phenomena like drag force, heat transfer, and mass transfer. In this context, the aim of the present work focuses on modeling the magnetohydrodynamic peristaltic slip flow of Casson nanofluid and analyzing the role of multiple slip effects over a non-uniform rough channel. A novel rough non-uniform model is effectively governed by a set of nonlinear coupled governing partial differential equations, which are simplified under long wavelength and creeping flow approximations. The resulting simplified equations are solved numerically using Mathematica's built-in ND-Solve tool. The study primarily examines the velocity, temperature, and concentration profiles graphically for various pertinent physiological parameters. Additionally, engineering interests like skin friction coefficients, Nusselt numbers, and Sherwood numbers are reported in tabular form, revealing intrinsic flow oscillations. The results are further explored by analyzing pressure drop, friction force, and bolus shapes created by the sinusoidal motion of the fluid. Such insights are vital for comprehending internal fluctuations during peristaltic transport. In summary, skin friction and Nusselt numbers are typically higher for rough versus smooth surfaces. Also, roughness induces stresses, conductive-convective heat transfer, and viscous effects. Further, magnetically activated rough surfaces and nanoparticle interactions create flux balances. Magnetic effects reduce bolus size due to resistive forces. The findings of this study have important applications in biomedical engineering, aerospace engineering, heat transfer enhancement, and environmental remediation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Evaluation of Mechanical Properties, Color Stability, and Cleaning Efficacy of BioMed Clear Resin-Based Dental Aligners A Semi-Analytic Hybrid Approach for Solving the Buckmaster Equation: Application of the Elzaki Projected Differential Transform Method (EPDTM) Harnessing Free Space Optics for Efficient 6G Fronthaul Networks: Challenges and Opportunities Deep Learning Based Visual Servo for Autonomous Aircraft Refueling Origin of the Paleocene Granite in the Lhasa Terrane of the Qinghai-Tibet Plateau and Its Constraints on the Evolution of the Neo-Tethys Ocean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1