{"title":"Toughening effect and mechanisms of AlN whiskers on a low-temperature sintered AlNw/AlN ceramics","authors":"Dian Zhang, Xuan Liu, Yijun Liu","doi":"10.1111/ijac.14968","DOIUrl":null,"url":null,"abstract":"<p>Conventional aluminum nitride (AlN) ceramics exhibited insufficient mechanical properties expected from their potential applications in the presence of dynamic loads and intensive stresses caused by thermal shock. In this study, the mechanical properties of AlN ceramics were enhanced by toughening them using AlN whiskers (AlN<sub>w</sub>) via gel casting followed by low-temperature sintering at 1650°C. The addition of AlN<sub>w</sub> simultaneously increased the bending strength, toughness and thermal conductivity of the AlN ceramics. The maximum values of the bending strength, toughness, and thermal conductivity of 9.0 wt% AlN<sub>w</sub>/AlN were 303.92 MPa, 3.92 MPa·m<sup>1/2</sup> and 186.53 W·m<sup>−1</sup>·K<sup>−1</sup>, respectively, which were higher than those of the AlN ceramics by 39.93%, 61.31% and, 15.61%, respectively. The AlN<sub>w</sub> in AlN<sub>w</sub>/AlN ceramics tightly bonded with the ceramic matrix, leading to two characteristic toughening mechanisms in the ceramics: crack pinning and deflection at irregular grain boundaries caused by doped whiskers, as well as bridging and stress relaxation caused by whiskers incorporated with the grains. Moreover, the one-dimensional morphology of AlN<sub>w</sub> can provide a channel for quick photon transport, thereby enhancing the thermal conductivity of AlN<sub>w</sub>/AlN.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14968","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional aluminum nitride (AlN) ceramics exhibited insufficient mechanical properties expected from their potential applications in the presence of dynamic loads and intensive stresses caused by thermal shock. In this study, the mechanical properties of AlN ceramics were enhanced by toughening them using AlN whiskers (AlNw) via gel casting followed by low-temperature sintering at 1650°C. The addition of AlNw simultaneously increased the bending strength, toughness and thermal conductivity of the AlN ceramics. The maximum values of the bending strength, toughness, and thermal conductivity of 9.0 wt% AlNw/AlN were 303.92 MPa, 3.92 MPa·m1/2 and 186.53 W·m−1·K−1, respectively, which were higher than those of the AlN ceramics by 39.93%, 61.31% and, 15.61%, respectively. The AlNw in AlNw/AlN ceramics tightly bonded with the ceramic matrix, leading to two characteristic toughening mechanisms in the ceramics: crack pinning and deflection at irregular grain boundaries caused by doped whiskers, as well as bridging and stress relaxation caused by whiskers incorporated with the grains. Moreover, the one-dimensional morphology of AlNw can provide a channel for quick photon transport, thereby enhancing the thermal conductivity of AlNw/AlN.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;