Function over form: The benefits of aspen as surrogate brood-rearing habitat for greater sage-grouse

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2024-12-25 DOI:10.1002/ecs2.70060
Michel T. Kohl, Charles P. Sandford, Paul C. Rogers, Renee Chi, Terry A. Messmer, David K. Dahlgren
{"title":"Function over form: The benefits of aspen as surrogate brood-rearing habitat for greater sage-grouse","authors":"Michel T. Kohl,&nbsp;Charles P. Sandford,&nbsp;Paul C. Rogers,&nbsp;Renee Chi,&nbsp;Terry A. Messmer,&nbsp;David K. Dahlgren","doi":"10.1002/ecs2.70060","DOIUrl":null,"url":null,"abstract":"<p>Species of conservation concern are often habitat specialists, posing significant risk to those species when specific plant communities are threatened. As a result, practitioners habitually focus conservation efforts on these communities while ignoring ecological mechanisms that explain the wildlife–plant relationships. In doing so, practitioners may overlook alternative vegetation communities that could maintain wildlife populations under alternative conditions (e.g., climate change). Here, we term these areas surrogate habitat, defined as vegetation communities or resource sites that provide similar critical resources as conventional sites, and assess their potential for conservation using a case study of greater sage-grouse (<i>Centrocercus urophasianus</i>) on Parker Mountain, Utah (1998–2009). Sage-grouse are a sagebrush-obligate species and a species of conservation concern. Range-wide conservation efforts have long emphasized management of seasonal habitats within semiarid sagebrush ecosystems, specifically management of mesic or wet meadow sites that provide brood-rearing habitat required for population persistence. Despite this requirement, no conventional mesic habitat exists on Parker Mountain, yet it supports one of Utah's largest sage-grouse populations. Rather, the Parker sagebrush system abuts quaking aspen (<i>Populus tremuloides</i>) stands that may provide brood-rearing habitat analogous to wet meadow sites. It is unclear, however, to what extent sage-grouse use these aspen stands because sage-grouse commonly avoid tall structures (e.g., trees) and their associated avian predators. Thus, we tested whether (1) sage-grouse selected for surrogate habitat (i.e., aspen edge) and (2) selection behaviors related to surrogate habitat had demographic effects on the population. As we predicted, sage-grouse selected for these areas, and the sage-grouse that spent increased time closer to aspen edges did not experience increased mortality. Together, this demonstrates that the aspen–sagebrush edge provided a surrogate for the wet meadows used by other populations. More broadly, this suggests that conservation practitioners should move beyond simplistic wildlife–habitat associations toward a more holistic view of animal ecology focused on the wildlife–resource association, an approach that becomes particularly useful in areas where conventional obligate habitat may be degraded or lost. This work also implores us to examine alternative habitat potential rather than applying one-size-fits-all models to threatened species conservation.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70060","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Species of conservation concern are often habitat specialists, posing significant risk to those species when specific plant communities are threatened. As a result, practitioners habitually focus conservation efforts on these communities while ignoring ecological mechanisms that explain the wildlife–plant relationships. In doing so, practitioners may overlook alternative vegetation communities that could maintain wildlife populations under alternative conditions (e.g., climate change). Here, we term these areas surrogate habitat, defined as vegetation communities or resource sites that provide similar critical resources as conventional sites, and assess their potential for conservation using a case study of greater sage-grouse (Centrocercus urophasianus) on Parker Mountain, Utah (1998–2009). Sage-grouse are a sagebrush-obligate species and a species of conservation concern. Range-wide conservation efforts have long emphasized management of seasonal habitats within semiarid sagebrush ecosystems, specifically management of mesic or wet meadow sites that provide brood-rearing habitat required for population persistence. Despite this requirement, no conventional mesic habitat exists on Parker Mountain, yet it supports one of Utah's largest sage-grouse populations. Rather, the Parker sagebrush system abuts quaking aspen (Populus tremuloides) stands that may provide brood-rearing habitat analogous to wet meadow sites. It is unclear, however, to what extent sage-grouse use these aspen stands because sage-grouse commonly avoid tall structures (e.g., trees) and their associated avian predators. Thus, we tested whether (1) sage-grouse selected for surrogate habitat (i.e., aspen edge) and (2) selection behaviors related to surrogate habitat had demographic effects on the population. As we predicted, sage-grouse selected for these areas, and the sage-grouse that spent increased time closer to aspen edges did not experience increased mortality. Together, this demonstrates that the aspen–sagebrush edge provided a surrogate for the wet meadows used by other populations. More broadly, this suggests that conservation practitioners should move beyond simplistic wildlife–habitat associations toward a more holistic view of animal ecology focused on the wildlife–resource association, an approach that becomes particularly useful in areas where conventional obligate habitat may be degraded or lost. This work also implores us to examine alternative habitat potential rather than applying one-size-fits-all models to threatened species conservation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
Cover Image Issue Information Fish mass mortality events in northern temperate lakes are happening later in the year than in the past Erratum Erratum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1