{"title":"Ammonium oxidation by bacteria and archaea have functional implications for nitrification across a forested landscape","authors":"Jennifer Wen, Rima Upchurch, Donald R. Zak","doi":"10.1002/ecs2.4958","DOIUrl":null,"url":null,"abstract":"<p>Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) control nitrification in terrestrial systems. Soil pH and substrate availability (NH<sub>4</sub><sup>+</sup>) can influence community composition, which may affect the contributions of these organisms to nitrification in forest soils. Using high-throughput sequencing, we identified the <i>amoA</i> of AOA and AOB from northern forest stands that occur across a natural gradient of nitrification, soil pH, and net N mineralization (i.e., NH<sub>4</sub><sup>+</sup> availability). Specifically, we investigated changes in relative abundance and community composition of AOA and AOB across a soil pH and net N mineralization gradient, and how turnover in community composition is linked to nitrification. We found that soil pH was a stronger driver of AOA and AOB relative abundance than was NH<sub>4</sub><sup>+</sup> availability. Generally, AOA and AOB turnover were positively associated with soil pH; however, some AOA taxa also displayed a negative association. Interestingly, the relative abundance of only a small number of AOA and AOB taxa was significantly associated with net nitrification rates. Our findings reveal that coexisting taxonomical groups of ammonia-oxidizers in forest soils have diverse responses to environmental factors, which influence how ammonia-oxidizer communities are structured, likely having direct implications for nitrification and the regulation of N cycling in forest systems.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.4958","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.4958","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) control nitrification in terrestrial systems. Soil pH and substrate availability (NH4+) can influence community composition, which may affect the contributions of these organisms to nitrification in forest soils. Using high-throughput sequencing, we identified the amoA of AOA and AOB from northern forest stands that occur across a natural gradient of nitrification, soil pH, and net N mineralization (i.e., NH4+ availability). Specifically, we investigated changes in relative abundance and community composition of AOA and AOB across a soil pH and net N mineralization gradient, and how turnover in community composition is linked to nitrification. We found that soil pH was a stronger driver of AOA and AOB relative abundance than was NH4+ availability. Generally, AOA and AOB turnover were positively associated with soil pH; however, some AOA taxa also displayed a negative association. Interestingly, the relative abundance of only a small number of AOA and AOB taxa was significantly associated with net nitrification rates. Our findings reveal that coexisting taxonomical groups of ammonia-oxidizers in forest soils have diverse responses to environmental factors, which influence how ammonia-oxidizer communities are structured, likely having direct implications for nitrification and the regulation of N cycling in forest systems.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.