Docosahexaenoic Acid Inhibits p62-Dependent Autophagy by Targeting HSP70A1A/TGM-2 Axis to Alleviate Arecoline-Induced Oral Submucosal Fibrosis

IF 3.5 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Food Biochemistry Pub Date : 2025-01-27 DOI:10.1155/jfbc/2110625
Zhaoyong Hu, Yuzhe Dai, Chenwei Wang, Yanli Liu, Qun Li, Qiaojuan Zuo, Ruiyi Chen, Jin Tan
{"title":"Docosahexaenoic Acid Inhibits p62-Dependent Autophagy by Targeting HSP70A1A/TGM-2 Axis to Alleviate Arecoline-Induced Oral Submucosal Fibrosis","authors":"Zhaoyong Hu,&nbsp;Yuzhe Dai,&nbsp;Chenwei Wang,&nbsp;Yanli Liu,&nbsp;Qun Li,&nbsp;Qiaojuan Zuo,&nbsp;Ruiyi Chen,&nbsp;Jin Tan","doi":"10.1155/jfbc/2110625","DOIUrl":null,"url":null,"abstract":"<div>\n <p><b>Background:</b> The role of docosahexaenoic acid (DHA) in fibrosis of other organs has been studied, but its function in oral submucous fibrosis (OSF) has not been reported. This study aimed to investigate the role and mechanism of DHA in OSF.</p>\n <p><b>Methods:</b> OSF rat and cell models were established induced by arecoline. Through a series of in vivo and in vitro experiments, the function of DHA in OSF was investigated. Mechanistically, the interaction of TGM-2 with HSP70A1A and p62 proteins was validated using co-immunoprecipitation. Additionally, in cells transfected with overexpression vectors of HSP70A1A or TGM-2 and treated with DHA and arecoline or co-treated with a p62 inhibitor XRK3F2 along with DHA and arecoline, the function of the DHA/HSP70A1A/TGM-2/p62 axis in OSF was explored.</p>\n <p><b>Results:</b> In vivo, arecoline caused severe pathological damage and fibrosis in rat oral mucosal tissues and induced overexpression of HSP70A1A. Arecoline treatment also elevated tissue ROS levels and the expression of α-SMA, Collagen I, TGM-2, and LC3 II/I, while decreasing tissue p62 protein expression and serum GSH levels. Treatment with DHA reversed these changes and improved the pathological damage and fibrosis in OSF rats. In vitro, arecoline induced the expression of HSP70A1A in a concentration-dependent manner, and DHA inhibited its expression by directly binding to HSP70A1A and reducing the expression of α-SMA, Collagen I, TGM-2, LC3 II/I, and ROS levels induced by arecoline in cells, while increasing p62 protein expression and GSH levels in cell supernatants. Furthermore, arecoline induced TGM-2 expression, and overexpression of HSP70A1A counteracted the protective effect of DHA on cells and the suppression of TGM-2 expression. TGM-2 interacted with HSP70A1A and p62 proteins. Overexpression of TGM-2 or treatment with XRK3F2 activated autophagy and abolished the protective effect of DHA on cells.</p>\n <p><b>Conclusion:</b> DHA inhibits p62-dependent autophagy through targeting the HSP70A1A/TGM-2 axis, thereby alleviating arecoline-induced OSF. These results suggest that DHA and its mediated autophagy regulation mechanism can be a therapeutic target for OSF.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2025 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/2110625","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/2110625","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The role of docosahexaenoic acid (DHA) in fibrosis of other organs has been studied, but its function in oral submucous fibrosis (OSF) has not been reported. This study aimed to investigate the role and mechanism of DHA in OSF.

Methods: OSF rat and cell models were established induced by arecoline. Through a series of in vivo and in vitro experiments, the function of DHA in OSF was investigated. Mechanistically, the interaction of TGM-2 with HSP70A1A and p62 proteins was validated using co-immunoprecipitation. Additionally, in cells transfected with overexpression vectors of HSP70A1A or TGM-2 and treated with DHA and arecoline or co-treated with a p62 inhibitor XRK3F2 along with DHA and arecoline, the function of the DHA/HSP70A1A/TGM-2/p62 axis in OSF was explored.

Results: In vivo, arecoline caused severe pathological damage and fibrosis in rat oral mucosal tissues and induced overexpression of HSP70A1A. Arecoline treatment also elevated tissue ROS levels and the expression of α-SMA, Collagen I, TGM-2, and LC3 II/I, while decreasing tissue p62 protein expression and serum GSH levels. Treatment with DHA reversed these changes and improved the pathological damage and fibrosis in OSF rats. In vitro, arecoline induced the expression of HSP70A1A in a concentration-dependent manner, and DHA inhibited its expression by directly binding to HSP70A1A and reducing the expression of α-SMA, Collagen I, TGM-2, LC3 II/I, and ROS levels induced by arecoline in cells, while increasing p62 protein expression and GSH levels in cell supernatants. Furthermore, arecoline induced TGM-2 expression, and overexpression of HSP70A1A counteracted the protective effect of DHA on cells and the suppression of TGM-2 expression. TGM-2 interacted with HSP70A1A and p62 proteins. Overexpression of TGM-2 or treatment with XRK3F2 activated autophagy and abolished the protective effect of DHA on cells.

Conclusion: DHA inhibits p62-dependent autophagy through targeting the HSP70A1A/TGM-2 axis, thereby alleviating arecoline-induced OSF. These results suggest that DHA and its mediated autophagy regulation mechanism can be a therapeutic target for OSF.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
BCA protein concentration assay kit
来源期刊
Journal of Food Biochemistry
Journal of Food Biochemistry 生物-生化与分子生物学
CiteScore
7.80
自引率
5.00%
发文量
488
审稿时长
3.6 months
期刊介绍: The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet. Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes: -Biochemistry of postharvest/postmortem and processing problems -Enzyme chemistry and technology -Membrane biology and chemistry -Cell biology -Biophysics -Genetic expression -Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following: -Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease -The mechanism of the ripening process in fruit -The biogenesis of flavor precursors in meat -How biochemical changes in farm-raised fish are affecting processing and edible quality
期刊最新文献
Ginger (Zingiber officinale Roscoe) Bioactive Components: Potential Resources for Kidney Health Combatting BPA-Induced Neurotoxicity With Purple Carrot Extract (Daucus carota): Modulation of Key Neurotransmitters and Cellular Pathways in Albino Rats Amelioratory Role of Lactobacillus paracasei N1115 on Blood Glucose, Inflammation, Cognitive Function, and Gut Microbiota Composition in Type 2 Diabetes Mellitus Rats Impact of Commercial Preparations of Pectinases on the Chemical Composition and Stability of Phenolic Compounds in Grape Juices Shenbing Decoction III and Apigenin Improve Peritoneal Fibrosis Mediated by Epithelial–Mesenchymal Transition Through TAK1/p38MAPK/NF-κB Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1