{"title":"Enhancing wind power forecasting and ramp detection using long short-term memory networks and the swinging door algorithm","authors":"Ravi Pandit, Shikun Mu, Davide Astolfi","doi":"10.1049/rpg2.70002","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of short-term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short-term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi-task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest <i>R</i>-squared (<i>R</i><sup>2</sup>) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm-LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.70002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate prediction of short-term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short-term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi-task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest R-squared (R2) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm-LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf