A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues

IF 2.1 3区 地球科学 Q2 LIMNOLOGY Limnology and Oceanography: Methods Pub Date : 2024-11-27 DOI:10.1002/lom3.10660
Axel Wohleber, Camille Blouzon, Julien Witwicky, Patrick Ginot, Nicolas C. Jourdain, Roberto Grilli
{"title":"A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues","authors":"Axel Wohleber,&nbsp;Camille Blouzon,&nbsp;Julien Witwicky,&nbsp;Patrick Ginot,&nbsp;Nicolas C. Jourdain,&nbsp;Roberto Grilli","doi":"10.1002/lom3.10660","DOIUrl":null,"url":null,"abstract":"<p>We describe a novel compact autonomous in situ sensor for semi-continuous measurement of water isotopes (δD, δ<sup>18</sup>O, and δ<sup>17</sup>O) in liquid water. The sensor relies on a dual-inlet water vapor injection system based on the pervaporation through a semi-permeable membrane, and on the water vapor composition analysis using a dedicated optical feedback cavity enhanced absorption spectrometer. The sensor has dimensions of 165 mm diameter and 550 mm long, for a weight of ∼ 8 kg. A titanium casing allows applications down to 6000 m deep for a total effective weight of 45 (23) kg in air (water). It has a power consumption of ∼ 40 W, and an autonomy of 10–12 h which is ensured by a dedicated Li-ion battery pack. The sensor is equipped with single-pair high-speed digital subscriber line communication for telemetry purposes. The instrument provides an accuracy of 0.3‰ (2<i>σ</i>) for all water isotopes with a 9-min integration time. The instrument is suitable for investigating the freshwater cycle in the ocean, and in particular the transformation of ocean water masses related to iceberg and ice shelf melting.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"23 1","pages":"26-38"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10660","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10660","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a novel compact autonomous in situ sensor for semi-continuous measurement of water isotopes (δD, δ18O, and δ17O) in liquid water. The sensor relies on a dual-inlet water vapor injection system based on the pervaporation through a semi-permeable membrane, and on the water vapor composition analysis using a dedicated optical feedback cavity enhanced absorption spectrometer. The sensor has dimensions of 165 mm diameter and 550 mm long, for a weight of ∼ 8 kg. A titanium casing allows applications down to 6000 m deep for a total effective weight of 45 (23) kg in air (water). It has a power consumption of ∼ 40 W, and an autonomy of 10–12 h which is ensured by a dedicated Li-ion battery pack. The sensor is equipped with single-pair high-speed digital subscriber line communication for telemetry purposes. The instrument provides an accuracy of 0.3‰ (2σ) for all water isotopes with a 9-min integration time. The instrument is suitable for investigating the freshwater cycle in the ocean, and in particular the transformation of ocean water masses related to iceberg and ice shelf melting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
期刊最新文献
Issue Information Issue Information Producing plankton classifiers that are robust to dataset shift A membrane inlet laser spectrometer for in situ measurement of triple water isotopologues Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1