Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low-cost treated orange peel from aqueous solutions
{"title":"Isotherm, kinetic, and thermodynamic studies of adsorption of copper (II) and nickel (II) ions using low-cost treated orange peel from aqueous solutions","authors":"Mutlu Canpolat, Yalçın Altunkaynak","doi":"10.1002/ep.14509","DOIUrl":null,"url":null,"abstract":"<p>The aim of this study was to utilize processed orange peel waste (TOP) as an adsorbent to remove Cu(II) and Ni(II) ions from aqueous solutions. As a result of systematic experiments to determine the optimal conditions, it was determined that the most suitable conditions for the effective removal of Cu(II) ions were 400 mg/L initial concentration, 100 min contact time, 0.2 g adsorbent dosage, and a solution pH of 5.92. Similarly, the optimal conditions for the removal of Ni(II) ions were determined by systematic experiments to be 300 mg/L initial concentration, 0.2 g adsorbent dosage, 100 min contact time, and a solution pH of 6.19. The systematic experiments also included further investigation of the surface properties of TOP, and promising results were obtained by tests at three different temperatures (298, 308, and 318 K). The adsorption capacities for Cu(II), Ni(II), and Ni(II) were determined as 72.99, 75.18, and 76.33 mg/g, 42.55, 44.44, and 46.29 mg/g, respectively. Further analysis of the adsorption kinetics revealed that the pseudo-second-order model accurately represented the experimental data for both ions. Thermodynamic investigations provided strong evidence that the adsorption process of these noble metal ions on TOP is endothermic and spontaneous. The results of this study emphasize that TOP, with its low cost, easy-to-use nature, and high adsorption capacity, can be considered a long-term solution for environmental remediation and water treatment in sustainable engineering applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"44 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14509","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to utilize processed orange peel waste (TOP) as an adsorbent to remove Cu(II) and Ni(II) ions from aqueous solutions. As a result of systematic experiments to determine the optimal conditions, it was determined that the most suitable conditions for the effective removal of Cu(II) ions were 400 mg/L initial concentration, 100 min contact time, 0.2 g adsorbent dosage, and a solution pH of 5.92. Similarly, the optimal conditions for the removal of Ni(II) ions were determined by systematic experiments to be 300 mg/L initial concentration, 0.2 g adsorbent dosage, 100 min contact time, and a solution pH of 6.19. The systematic experiments also included further investigation of the surface properties of TOP, and promising results were obtained by tests at three different temperatures (298, 308, and 318 K). The adsorption capacities for Cu(II), Ni(II), and Ni(II) were determined as 72.99, 75.18, and 76.33 mg/g, 42.55, 44.44, and 46.29 mg/g, respectively. Further analysis of the adsorption kinetics revealed that the pseudo-second-order model accurately represented the experimental data for both ions. Thermodynamic investigations provided strong evidence that the adsorption process of these noble metal ions on TOP is endothermic and spontaneous. The results of this study emphasize that TOP, with its low cost, easy-to-use nature, and high adsorption capacity, can be considered a long-term solution for environmental remediation and water treatment in sustainable engineering applications.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.