Differential expression of hemolymph proteins in wild bumblebees provides insights into species-specific impacts of heat stress

IF 1.6 4区 农林科学 Q2 ENTOMOLOGY Physiological Entomology Pub Date : 2024-10-27 DOI:10.1111/phen.12470
Kimberly Przybyla, Baptiste Martinet, Denis Michez, Michel Bocquet, Dalel Askri, Philippe Bulet
{"title":"Differential expression of hemolymph proteins in wild bumblebees provides insights into species-specific impacts of heat stress","authors":"Kimberly Przybyla,&nbsp;Baptiste Martinet,&nbsp;Denis Michez,&nbsp;Michel Bocquet,&nbsp;Dalel Askri,&nbsp;Philippe Bulet","doi":"10.1111/phen.12470","DOIUrl":null,"url":null,"abstract":"<p>Wildlife faces an increasing threat from extreme climatic events, such as heatwaves, which can have a severe impact on various species, including crucial pollinators like bumblebees. Bumblebees are cold-adapted and heterothermic, possessing the ability to regulate their internal temperature. The impact of heat stress seems species specific in bumblebees. While most species are impacted, some bumblebee species manage to survive, potentially by employing physiological mechanisms, including the modulation of their protein profile (e.g. Heat Shock Proteins). However, there is limited understanding of how their protein profiles are associated with heat exposure. In this study, we examined the global variation in the protein profile of males from two bumblebee species sampled in the wild: the heat-tolerant <i>Bombus terrestris</i> and the heat-sensitive <i>Bombus magnus</i>. After subjecting them to heat stupor at 40°C in controlled condition, it was observed that nearly all <i>B. terrestris</i> survived the stress, while over 50% of <i>B. magnus</i> individuals succumbed to the heat exposure. Through off-gel bottom-up proteomics and LC–MS/MS analysis of the hemolymph proteome, we identified 164 proteins in both species with a large part of differentially expressed proteins after heat exposure. Additionally, quantitative analysis of fat bodies revealed that the relative mass was stable in <i>B. terrestris</i>, while it was significantly lower in <i>B. magnus</i> exposed to heat stress. Our data suggest that compared with <i>B. magnus</i>, <i>B. terrestris</i> displays a higher adaptability of its hemolymph proteome in response to heat stress. This adaptability could be a key factor contributing to the high physiological resistance of <i>B. terrestris</i> and its ability to adapt to new, stressful environments expected due to climate change. Understanding these mechanisms of protein regulation in bumblebees could provide valuable insights into their resilience and vulnerability facing environmental stresses.</p>","PeriodicalId":20081,"journal":{"name":"Physiological Entomology","volume":"50 1","pages":"105-117"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/phen.12470","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wildlife faces an increasing threat from extreme climatic events, such as heatwaves, which can have a severe impact on various species, including crucial pollinators like bumblebees. Bumblebees are cold-adapted and heterothermic, possessing the ability to regulate their internal temperature. The impact of heat stress seems species specific in bumblebees. While most species are impacted, some bumblebee species manage to survive, potentially by employing physiological mechanisms, including the modulation of their protein profile (e.g. Heat Shock Proteins). However, there is limited understanding of how their protein profiles are associated with heat exposure. In this study, we examined the global variation in the protein profile of males from two bumblebee species sampled in the wild: the heat-tolerant Bombus terrestris and the heat-sensitive Bombus magnus. After subjecting them to heat stupor at 40°C in controlled condition, it was observed that nearly all B. terrestris survived the stress, while over 50% of B. magnus individuals succumbed to the heat exposure. Through off-gel bottom-up proteomics and LC–MS/MS analysis of the hemolymph proteome, we identified 164 proteins in both species with a large part of differentially expressed proteins after heat exposure. Additionally, quantitative analysis of fat bodies revealed that the relative mass was stable in B. terrestris, while it was significantly lower in B. magnus exposed to heat stress. Our data suggest that compared with B. magnus, B. terrestris displays a higher adaptability of its hemolymph proteome in response to heat stress. This adaptability could be a key factor contributing to the high physiological resistance of B. terrestris and its ability to adapt to new, stressful environments expected due to climate change. Understanding these mechanisms of protein regulation in bumblebees could provide valuable insights into their resilience and vulnerability facing environmental stresses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological Entomology
Physiological Entomology 生物-昆虫学
CiteScore
2.80
自引率
6.70%
发文量
21
审稿时长
>12 weeks
期刊介绍: Physiological Entomology broadly considers “how insects work” and how they are adapted to their environments at all levels from genes and molecules, anatomy and structure, to behaviour and interactions of whole organisms. We publish high quality experiment based papers reporting research on insects and other arthropods as well as occasional reviews. The journal thus has a focus on physiological and experimental approaches to understanding how insects function. The broad subject coverage of the Journal includes, but is not limited to: -experimental analysis of behaviour- behavioural physiology and biochemistry- neurobiology and sensory physiology- general physiology- circadian rhythms and photoperiodism- chemical ecology
期刊最新文献
Issue Information Key questions for future research in Physiological Entomology Issue Information Differential expression of hemolymph proteins in wild bumblebees provides insights into species-specific impacts of heat stress How insects work—Linking genotype to phenotype
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1