Estimation of Fire Counts and Fire Radiative Power Using Satellite Optical and Microwave Vegetation Indices With Random Forest Method

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-01-29 DOI:10.1029/2024JD041680
Jiawei Duan, Jiheng Hu, Yuyun Fu, Qingyang Liu, Rui Li, Yipu Wang
{"title":"Estimation of Fire Counts and Fire Radiative Power Using Satellite Optical and Microwave Vegetation Indices With Random Forest Method","authors":"Jiawei Duan,&nbsp;Jiheng Hu,&nbsp;Yuyun Fu,&nbsp;Qingyang Liu,&nbsp;Rui Li,&nbsp;Yipu Wang","doi":"10.1029/2024JD041680","DOIUrl":null,"url":null,"abstract":"<p>The satellite microwave emissivity difference vegetation index (EDVI) has been used in previous studies to estimate FCs and FRP using traditional multivariate linear regression models. However, the nonlinear effects and contributions of numerous factors that affect forest fires cannot be disentangled by this model. Using the random forest (RF) model, this study utilized multiple EDVIs and the optical normalized difference vegetation index (NDVI) as key fuel properties to resolve the physical driving mechanisms of forest fires and to estimate the daily FCs and FRP over East Asia. The results showed that the estimated FCs and FRP were in good agreement with satellite observations, with a spatial R of 0.59 for FCs and 0.63 for FRP and a temporal R of 0.80 for FCs and 0.81 for FRP. The integration of EDVIs and NDVI into the RF model was found to improve model performance and generate overall lower systematic errors than the model without vegetation variables. Model performance was better than that in previous studies using multivariate linear regression models. In addition, EDVIs showed greater importance than NDVI. This was largely due to their daily temporal resolution that allowed EDVIs to capture forest fire dynamics in time. The combination of the RF model with satellite microwave and optical observations shows good performance and has great potential for FC and FRP estimations in global fire danger assessment.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041680","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The satellite microwave emissivity difference vegetation index (EDVI) has been used in previous studies to estimate FCs and FRP using traditional multivariate linear regression models. However, the nonlinear effects and contributions of numerous factors that affect forest fires cannot be disentangled by this model. Using the random forest (RF) model, this study utilized multiple EDVIs and the optical normalized difference vegetation index (NDVI) as key fuel properties to resolve the physical driving mechanisms of forest fires and to estimate the daily FCs and FRP over East Asia. The results showed that the estimated FCs and FRP were in good agreement with satellite observations, with a spatial R of 0.59 for FCs and 0.63 for FRP and a temporal R of 0.80 for FCs and 0.81 for FRP. The integration of EDVIs and NDVI into the RF model was found to improve model performance and generate overall lower systematic errors than the model without vegetation variables. Model performance was better than that in previous studies using multivariate linear regression models. In addition, EDVIs showed greater importance than NDVI. This was largely due to their daily temporal resolution that allowed EDVIs to capture forest fire dynamics in time. The combination of the RF model with satellite microwave and optical observations shows good performance and has great potential for FC and FRP estimations in global fire danger assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
The Response of Tropical Cyclone Inner Core and Outer Rainband Precipitation to Warming in Idealized Convection-Permitting WRF Atmospheric Response to Mesoscale Ocean Eddies in the Maritime Continent Diurnal Trends and Meteorological Factors Influencing the Variability of Fluorescent Bioaerosol in Mt. Crested Butte, Colorado During SAIL Pleistocene Global Cooling Did Not Weaken the East Asian Summer Monsoon Decoding the Relationship Between Cloud Electrification, Downdrafts, and Surface Ozone in the Amazon Basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1