{"title":"Crack Arrest Analysis of Components With Compressive Residual Stress","authors":"Xuran Xiao, Volodymyr Okorokov, Donald Mackenzie","doi":"10.1111/ffe.14539","DOIUrl":null,"url":null,"abstract":"<p>A finite element analysis and fracture mechanics methodology for determining the autofrettage pressure required to cause crack arrest in components under varying pressure loading are presented. Superposition of the autofrettage residual stress distribution and working load stress distribution is combined with ANSYS Separating Morphing and Adaptive Remeshing Technology (SMART) to determine the effective stress intensity factor as the crack grows. The condition for crack arrest is identified by comparison with a crack arrest model defining the crack propagation threshold stress intensity factor range for microstructurally short, physically short, and long cracks. The crack propagation threshold models of El Haddad and Chapetti are implemented and applied to fatigue analysis of stainless steel and low carbon steel double notch tensile test specimens with preinduced compressive residual stress. Based on comparison with fatigue test results, the Chapetti model is selected for use in the analysis of a 3D aluminum alloy valve body. The calculated minimum autofrettage pressure required to give crack arrest under a given working load cycle is found to be in good agreement with experimental observations from the literature.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1272-1287"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14539","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A finite element analysis and fracture mechanics methodology for determining the autofrettage pressure required to cause crack arrest in components under varying pressure loading are presented. Superposition of the autofrettage residual stress distribution and working load stress distribution is combined with ANSYS Separating Morphing and Adaptive Remeshing Technology (SMART) to determine the effective stress intensity factor as the crack grows. The condition for crack arrest is identified by comparison with a crack arrest model defining the crack propagation threshold stress intensity factor range for microstructurally short, physically short, and long cracks. The crack propagation threshold models of El Haddad and Chapetti are implemented and applied to fatigue analysis of stainless steel and low carbon steel double notch tensile test specimens with preinduced compressive residual stress. Based on comparison with fatigue test results, the Chapetti model is selected for use in the analysis of a 3D aluminum alloy valve body. The calculated minimum autofrettage pressure required to give crack arrest under a given working load cycle is found to be in good agreement with experimental observations from the literature.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.