{"title":"A Robust Static Model of Basic Oxygen Furnace for Analyzing Emerging Steelmaking Scenarios","authors":"Sidhartha Sarkar, Pritish Nayak, Tapas Kumar Roy, Deepoo Kumar, Nurni Neelakantan Viswanathan","doi":"10.1002/srin.202400336","DOIUrl":null,"url":null,"abstract":"<p>A robust static model, which incorporates emerging steelmaking scenarios in terms of solid charge mix with the given hot metal in basic oxygen furnace process, is developed. It employs mass and enthalpy balances to comprehend nonequilibrium conditions, considering four key empirical parameters: iron loss, post-combustion ratio, heat loss, and undissolved lime content in slag, which are fine-tuned using plant data through a multivariate approach, ensuring the reliability. The model is validated in a basic oxygen furnace (BOF) shop using data from over 4000 heats, achieving a strike rate of ≈77% for input lime prediction within ±1 ton and ≈80% for input oxygen prediction within ±600 Nm3. Model implementation in BOF shop provides valuable guidance to the operators, resulting in the reduction of average oxygen and lime consumption by 139 Nm<sup>3</sup> and 652 kg heat<sup>−1</sup>, respectively. The model also enables the determination of the maximum scrap utilization of ≈16% for 0.8% silicon and ≈14% for 0.6% silicon in hot metal, respectively. The model aids in calculating the maximum tap temperature for varying hot metal silicon and iron ore addition. Overall, the model optimizes primary steelmaking, enhancing efficiency, reducing resource consumption, and offering insights into alternative iron sources like direct reduced iron.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400336","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A robust static model, which incorporates emerging steelmaking scenarios in terms of solid charge mix with the given hot metal in basic oxygen furnace process, is developed. It employs mass and enthalpy balances to comprehend nonequilibrium conditions, considering four key empirical parameters: iron loss, post-combustion ratio, heat loss, and undissolved lime content in slag, which are fine-tuned using plant data through a multivariate approach, ensuring the reliability. The model is validated in a basic oxygen furnace (BOF) shop using data from over 4000 heats, achieving a strike rate of ≈77% for input lime prediction within ±1 ton and ≈80% for input oxygen prediction within ±600 Nm3. Model implementation in BOF shop provides valuable guidance to the operators, resulting in the reduction of average oxygen and lime consumption by 139 Nm3 and 652 kg heat−1, respectively. The model also enables the determination of the maximum scrap utilization of ≈16% for 0.8% silicon and ≈14% for 0.6% silicon in hot metal, respectively. The model aids in calculating the maximum tap temperature for varying hot metal silicon and iron ore addition. Overall, the model optimizes primary steelmaking, enhancing efficiency, reducing resource consumption, and offering insights into alternative iron sources like direct reduced iron.
期刊介绍:
steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags.
steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International.
Hot Topics:
-Steels for Automotive Applications
-High-strength Steels
-Sustainable steelmaking
-Interstitially Alloyed Steels
-Electromagnetic Processing of Metals
-High Speed Forming