SDOG: Scalable Scheduling of Flows Based on Dynamic Online Grouping in Industrial Time-Sensitive Networks

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Network Management Pub Date : 2025-01-30 DOI:10.1002/nem.70001
Chang Liu, Jin Wang, Chang Liu Sr, Jie Wang, Li Tian, Xiao Yu, Min Wei
{"title":"SDOG: Scalable Scheduling of Flows Based on Dynamic Online Grouping in Industrial Time-Sensitive Networks","authors":"Chang Liu,&nbsp;Jin Wang,&nbsp;Chang Liu Sr,&nbsp;Jie Wang,&nbsp;Li Tian,&nbsp;Xiao Yu,&nbsp;Min Wei","doi":"10.1002/nem.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although many studies have conducted the traffic scheduling of time-sensitive networks, most focus on small-scale static scheduling for specific scenarios, which cannot cope with dynamic and rapid scheduling of time-triggered (TT) flows generated in scalable scenarios in the Industrial Internet of Things. In this paper, we propose a Scalable TT flow scheduling method based on Dynamic Online Grouping in industrial time-sensitive networks (SDOG). To achieve that, we establish an undirected weighted flow graph based on the conflict index between TT flows and divide available time into equally spaced time windows. We dynamically group the TT flows within each window locally. When the number of flows to be scheduled doubles, we can achieve scalable and efficient solutions to efficiently schedule dynamic TT flows, avoiding unnecessary conflicts during data communication. In addition, a topology pruning strategy is adopted to prune the network topology of each group, reducing unnecessary link variables and further effectively shortening the scheduling time. Experimental results validated our expected performance and demonstrated that our proposed SDOG scheduling method has advantages in terms of overall traffic schedulability and average time for scheduling individual traffic.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.70001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Although many studies have conducted the traffic scheduling of time-sensitive networks, most focus on small-scale static scheduling for specific scenarios, which cannot cope with dynamic and rapid scheduling of time-triggered (TT) flows generated in scalable scenarios in the Industrial Internet of Things. In this paper, we propose a Scalable TT flow scheduling method based on Dynamic Online Grouping in industrial time-sensitive networks (SDOG). To achieve that, we establish an undirected weighted flow graph based on the conflict index between TT flows and divide available time into equally spaced time windows. We dynamically group the TT flows within each window locally. When the number of flows to be scheduled doubles, we can achieve scalable and efficient solutions to efficiently schedule dynamic TT flows, avoiding unnecessary conflicts during data communication. In addition, a topology pruning strategy is adopted to prune the network topology of each group, reducing unnecessary link variables and further effectively shortening the scheduling time. Experimental results validated our expected performance and demonstrated that our proposed SDOG scheduling method has advantages in terms of overall traffic schedulability and average time for scheduling individual traffic.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
期刊最新文献
Mitigating BGP Route Leaks With Attributes and Communities: A Stopgap Solution for Path Plausibility SDOG: Scalable Scheduling of Flows Based on Dynamic Online Grouping in Industrial Time-Sensitive Networks Issue Information Positional Packet Capture for Anomaly Detection in Multitenant Virtual Networks Buy Crypto, Sell Privacy: An Extended Investigation of the Cryptocurrency Exchange Evonax
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1