{"title":"Automatic feature-based markerless calibration and navigation method for augmented reality assisted dental treatment","authors":"Faizan Ahmad, Jing Xiong, Zeyang Xia","doi":"10.1049/csy2.70003","DOIUrl":null,"url":null,"abstract":"<p>Augmented reality (AR) is gaining traction in the field of computer-assisted treatment (CAT). Head-mounted display (HMD)-based AR in CAT provides dentists with enhanced visualisation by directly overlaying a three-dimensional (3D) model on a real patient during dental treatment. However, conventional AR-based treatments rely on optical markers and trackers, which makes them tedious, expensive, and uncomfortable for dentists. Therefore, a markerless image-to-patient tracking system is necessary to overcome these challenges and enhance system efficiency. This paper proposes a novel feature-based markerless calibration and navigation method for an HMD-based AR visualisation system. The authors address three sub-challenges: firstly, synthetic RGB-D data for anatomical landmark detection is generated to train a deep convolutional neural network (DCNN); secondly, the HMD is automatically calibrated using detected anatomical landmarks, eliminating the need for user input or optical trackers; and thirdly, a multi-iterative closest point (ICP) algorithm is developed for effective 3D-3D real-time navigation. The authors conduct several experiments on a commercially available HMD (HoloLens 2). Finally, the authors compare and evaluate the approach against state-of-the-art methods that employ HoloLens. The proposed method achieves a calibration virtual-to-real re-projection distance of (1.09 ± 0.23) mm and navigation projection errors and accuracies of approximately (0.53 ± 0.19) mm and 93.87%, respectively.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"6 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Augmented reality (AR) is gaining traction in the field of computer-assisted treatment (CAT). Head-mounted display (HMD)-based AR in CAT provides dentists with enhanced visualisation by directly overlaying a three-dimensional (3D) model on a real patient during dental treatment. However, conventional AR-based treatments rely on optical markers and trackers, which makes them tedious, expensive, and uncomfortable for dentists. Therefore, a markerless image-to-patient tracking system is necessary to overcome these challenges and enhance system efficiency. This paper proposes a novel feature-based markerless calibration and navigation method for an HMD-based AR visualisation system. The authors address three sub-challenges: firstly, synthetic RGB-D data for anatomical landmark detection is generated to train a deep convolutional neural network (DCNN); secondly, the HMD is automatically calibrated using detected anatomical landmarks, eliminating the need for user input or optical trackers; and thirdly, a multi-iterative closest point (ICP) algorithm is developed for effective 3D-3D real-time navigation. The authors conduct several experiments on a commercially available HMD (HoloLens 2). Finally, the authors compare and evaluate the approach against state-of-the-art methods that employ HoloLens. The proposed method achieves a calibration virtual-to-real re-projection distance of (1.09 ± 0.23) mm and navigation projection errors and accuracies of approximately (0.53 ± 0.19) mm and 93.87%, respectively.