Yue Zhang, Zhiqiang Lin, Kunfeng Wei, Yonghui Xu, Lizhen Cui
{"title":"Multi-semantic contrast enhancement for robust insulator defect detection","authors":"Yue Zhang, Zhiqiang Lin, Kunfeng Wei, Yonghui Xu, Lizhen Cui","doi":"10.1049/ell2.70150","DOIUrl":null,"url":null,"abstract":"<p>The effectiveness of deep learning-based methods for insulator defect detection has been proven. However, in practical applications of power transmission lines, the complex and variable backgrounds in insulator images, coupled with the difficulty in labeling insulator defects, pose challenges to improving the robustness of such methods. Existing studies often utilize generative adversarial networks or forcefully combine foreground and background to augment training samples, but they overlook the rich semantic information in complex scenes, leading to distorted generated adversarial samples. To address this challenge, an innovative multi-semantic contrast enhancement method that significantly enhances the robustness of defect detection by deeply integrating high-level semantic knowledge and low-level signal priors is proposed. Moreover, through adversarial training using generated samples with diverse semantics and real samples, the robustness of the method is further improved. Experimental results demonstrate that this method surpasses state-of-the-art models, achieving significant performance on three independent cross-scene datasets.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of deep learning-based methods for insulator defect detection has been proven. However, in practical applications of power transmission lines, the complex and variable backgrounds in insulator images, coupled with the difficulty in labeling insulator defects, pose challenges to improving the robustness of such methods. Existing studies often utilize generative adversarial networks or forcefully combine foreground and background to augment training samples, but they overlook the rich semantic information in complex scenes, leading to distorted generated adversarial samples. To address this challenge, an innovative multi-semantic contrast enhancement method that significantly enhances the robustness of defect detection by deeply integrating high-level semantic knowledge and low-level signal priors is proposed. Moreover, through adversarial training using generated samples with diverse semantics and real samples, the robustness of the method is further improved. Experimental results demonstrate that this method surpasses state-of-the-art models, achieving significant performance on three independent cross-scene datasets.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO