Tyler W. Miesse, Martin Henke, Andre de Souza de Lima, Celso M. Ferreira, Thomas Ravens
{"title":"The Critical Role of Sea Ice Products for Accurate Wind-Wave Simulations in the Arctic","authors":"Tyler W. Miesse, Martin Henke, Andre de Souza de Lima, Celso M. Ferreira, Thomas Ravens","doi":"10.1029/2024EA003803","DOIUrl":null,"url":null,"abstract":"<p>The Arctic region is experiencing significant changes due to climate change, and the resulting decline in sea ice concentration and extent is already impacting ocean dynamics and exacerbating coastal hazards in the region. In this context, numerical models play a crucial role in simulating the interactions between the ocean, land, sea ice, and atmosphere, thus supporting scientific studies in the region. This research aims to evaluate how different sea ice products with spatial resolutions varying from 2 to 25 km influence a phase averaged spectral wave model results in the Alaskan Arctic under storm conditions. Four events throughout the Fall to Winter seasons in 2019 were utilized to assess the accuracy of wave simulations generated under the dynamic sea ice conditions found in the Arctic. The selected sea ice products used to parameterize the numerical wave model include the National Snow and Ice Data Center (NSIDC) sea ice concentration, the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA5), the HYbrid Coordinate Ocean Model-Community Ice CodE (HYCOM-CICE) system assimilated with Navy Coupled Ocean Data Assimilation (NCODA), and the High-resolution Ice-Ocean Modeling and Assimilation System (HIOMAS). The Simulating WAves Nearshore (SWAN) model's accuracy in simulating waves using these sea ice products was evaluated against Sea State Daily Multisensor L3 satellite observations. Results show wave simulations using ERA5 consistently exhibited high correlation with observations, maintaining an accuracy above 0.83 to the observations across all events. Conversely, HIOMAS demonstrated the weakest performance, particularly during the Winter, with the lowest correlation of 0.40 to the observations. Remarkably, ERA5 surpassed all other products by up to 30% in accuracy during the selected storm events, and even when an ensemble was assessed by combining the selected sea ice products, ERA5's individual performance remained unmatched. Our study provides insights for selecting sea ice products under different sea ice conditions for accurately simulating waves and coastal hazards in high latitudes.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003803","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003803","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Arctic region is experiencing significant changes due to climate change, and the resulting decline in sea ice concentration and extent is already impacting ocean dynamics and exacerbating coastal hazards in the region. In this context, numerical models play a crucial role in simulating the interactions between the ocean, land, sea ice, and atmosphere, thus supporting scientific studies in the region. This research aims to evaluate how different sea ice products with spatial resolutions varying from 2 to 25 km influence a phase averaged spectral wave model results in the Alaskan Arctic under storm conditions. Four events throughout the Fall to Winter seasons in 2019 were utilized to assess the accuracy of wave simulations generated under the dynamic sea ice conditions found in the Arctic. The selected sea ice products used to parameterize the numerical wave model include the National Snow and Ice Data Center (NSIDC) sea ice concentration, the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA5), the HYbrid Coordinate Ocean Model-Community Ice CodE (HYCOM-CICE) system assimilated with Navy Coupled Ocean Data Assimilation (NCODA), and the High-resolution Ice-Ocean Modeling and Assimilation System (HIOMAS). The Simulating WAves Nearshore (SWAN) model's accuracy in simulating waves using these sea ice products was evaluated against Sea State Daily Multisensor L3 satellite observations. Results show wave simulations using ERA5 consistently exhibited high correlation with observations, maintaining an accuracy above 0.83 to the observations across all events. Conversely, HIOMAS demonstrated the weakest performance, particularly during the Winter, with the lowest correlation of 0.40 to the observations. Remarkably, ERA5 surpassed all other products by up to 30% in accuracy during the selected storm events, and even when an ensemble was assessed by combining the selected sea ice products, ERA5's individual performance remained unmatched. Our study provides insights for selecting sea ice products under different sea ice conditions for accurately simulating waves and coastal hazards in high latitudes.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.