Monitoring and dynamically controlling glucose uptake rate and central metabolism

Dongqin Ding, Yaru Zhu, Danyang Bai, Tongxin Wan, Sang Yup Lee, Dawei Zhang
{"title":"Monitoring and dynamically controlling glucose uptake rate and central metabolism","authors":"Dongqin Ding, Yaru Zhu, Danyang Bai, Tongxin Wan, Sang Yup Lee, Dawei Zhang","doi":"10.1038/s44286-024-00163-w","DOIUrl":null,"url":null,"abstract":"The rate of glucose import directly affects the maximum possible flux of central carbon metabolism. However, few tools can directly monitor the cellular glucose uptake rate. Here we report the development of a set of programmable bifunctional glucose uptake rate biosensors (GURBs) for real-time monitoring of glucose uptake rate, which enable the dynamic activation and inhibition of glucose uptake and central metabolism in Escherichia coli. These genetic circuits are used to monitor the glucose uptake rates of strains under different culture conditions. Also, feedback-loop control systems are designed to make cells rely on the glucose uptake rate to tune the target metabolic modules, resulting in a substantial increase of the titers of l-tryptophan, riboflavin and d-lactic acid. The glucose-uptake-rate-responsive genetic circuits developed in this study will serve as an effective tool for the dynamic control of glucose uptake and central metabolism. Glucose uptake is the initial step in cellular metabolism, and its uptake rate directly determines the overall metabolic flow. Here the authors develop a set of programmable bifunctional biosensors for real-time monitoring of glucose uptake rates and dynamic dual control of glucose uptake and central metabolism.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 1","pages":"50-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00163-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00163-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rate of glucose import directly affects the maximum possible flux of central carbon metabolism. However, few tools can directly monitor the cellular glucose uptake rate. Here we report the development of a set of programmable bifunctional glucose uptake rate biosensors (GURBs) for real-time monitoring of glucose uptake rate, which enable the dynamic activation and inhibition of glucose uptake and central metabolism in Escherichia coli. These genetic circuits are used to monitor the glucose uptake rates of strains under different culture conditions. Also, feedback-loop control systems are designed to make cells rely on the glucose uptake rate to tune the target metabolic modules, resulting in a substantial increase of the titers of l-tryptophan, riboflavin and d-lactic acid. The glucose-uptake-rate-responsive genetic circuits developed in this study will serve as an effective tool for the dynamic control of glucose uptake and central metabolism. Glucose uptake is the initial step in cellular metabolism, and its uptake rate directly determines the overall metabolic flow. Here the authors develop a set of programmable bifunctional biosensors for real-time monitoring of glucose uptake rates and dynamic dual control of glucose uptake and central metabolism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-looped electrochemical recycling of lithium-ion battery cathode materials to manufacturing feedstocks Evaluating advances in chemical engineering To mix or not to mix? The green hydrogen implementation gap Inert nano-overlay shields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1