{"title":"Accurate Neural Network Fine-Tuning Approach for Transferable Ab Initio Energy Prediction across Varying Molecular and Crystalline Scales.","authors":"Wai-Pan Ng, Zili Zhang, Jun Yang","doi":"10.1021/acs.jctc.4c01261","DOIUrl":null,"url":null,"abstract":"<p><p>Existing machine learning models attempt to predict the energies of large molecules by training small molecules, but eventually fail to retain high accuracy as the errors increase with system size. Through an orbital pairwise decomposition of the correlation energy, a pretrained neural network model on hundred-scale data containing small molecules is demonstrated to be sufficiently transferable for accurately predicting large systems, including molecules and crystals. Our model introduces a residual connection to explicitly learn the pairwise energy corrections, and employs various low-rank retraining techniques to modestly adjust the learned network parameters. We demonstrate that with as few as only one larger molecule retraining the base model originally trained on only small molecules of (H<sub>2</sub>O)<sub>6</sub>, the MP2 correlation energy of the large liquid water (H<sub>2</sub>O)<sub>64</sub> in a periodic supercell can be predicted at chemical accuracy. Similar performance is observed for large protonated clusters and periodic poly glycine chains. A demonstrative application is presented to predict the energy ordering of symmetrically inequivalent sublattices for distinct hydrogen orientations in the ice XV phase. Our work represents an important step forward in the quest for cost-effective, highly accurate and transferable neural network models in quantum chemistry, bridging the electronic structure patterns between small and large systems.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Existing machine learning models attempt to predict the energies of large molecules by training small molecules, but eventually fail to retain high accuracy as the errors increase with system size. Through an orbital pairwise decomposition of the correlation energy, a pretrained neural network model on hundred-scale data containing small molecules is demonstrated to be sufficiently transferable for accurately predicting large systems, including molecules and crystals. Our model introduces a residual connection to explicitly learn the pairwise energy corrections, and employs various low-rank retraining techniques to modestly adjust the learned network parameters. We demonstrate that with as few as only one larger molecule retraining the base model originally trained on only small molecules of (H2O)6, the MP2 correlation energy of the large liquid water (H2O)64 in a periodic supercell can be predicted at chemical accuracy. Similar performance is observed for large protonated clusters and periodic poly glycine chains. A demonstrative application is presented to predict the energy ordering of symmetrically inequivalent sublattices for distinct hydrogen orientations in the ice XV phase. Our work represents an important step forward in the quest for cost-effective, highly accurate and transferable neural network models in quantum chemistry, bridging the electronic structure patterns between small and large systems.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.