Non-Born-Oppenheimer Electronic Structure and Relativistic Effects in the Ground States of BH and BH.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-02-03 DOI:10.1021/acs.jpca.4c07582
Saeed Nasiri, Sergiy Bubin, Ludwik Adamowicz
{"title":"Non-Born-Oppenheimer Electronic Structure and Relativistic Effects in the Ground States of BH and BH<sup />.","authors":"Saeed Nasiri, Sergiy Bubin, Ludwik Adamowicz","doi":"10.1021/acs.jpca.4c07582","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we report benchmark variational calculations for the boron monohydride (BH) molecule and its cation (BH<sup>+</sup>). The solutions to the nonrelativistic Schrödinger equations for these systems are obtained using a variational method without assuming the Born-Oppenheimer (BO) approximation, which separates electronic and nuclear motions. The ground-state wave functions for both the eight-particle (two nuclei and six electrons) BH molecule and the seven-particle (two nuclei and five electrons) BH<sup>+</sup> ion are expanded in terms of all-particle explicitly correlated Gaussian with prefactors that effectively capture nucleus-nucleus correlation effects. These nonrelativistic non-BO wave functions are used to compute leading-order relativistic corrections to the total energies via perturbation theory, as well as to estimate leading-order quantum electrodynamics (QED) effects. The resulting total, dissociation, and ionization energies of BH represent the most accurate rigorously obtained theoretical values to date.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c07582","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we report benchmark variational calculations for the boron monohydride (BH) molecule and its cation (BH+). The solutions to the nonrelativistic Schrödinger equations for these systems are obtained using a variational method without assuming the Born-Oppenheimer (BO) approximation, which separates electronic and nuclear motions. The ground-state wave functions for both the eight-particle (two nuclei and six electrons) BH molecule and the seven-particle (two nuclei and five electrons) BH+ ion are expanded in terms of all-particle explicitly correlated Gaussian with prefactors that effectively capture nucleus-nucleus correlation effects. These nonrelativistic non-BO wave functions are used to compute leading-order relativistic corrections to the total energies via perturbation theory, as well as to estimate leading-order quantum electrodynamics (QED) effects. The resulting total, dissociation, and ionization energies of BH represent the most accurate rigorously obtained theoretical values to date.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Diffusion in Molten Sodium Carbonate. Real-Time Coupled Cluster Theory with Approximate Triples. Computational Study of the Gas-Phase Thermal Degradation and the Reaction Rate Coefficients of Perfluoroalkyl Ether Carboxylic Acids. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1